陈天奇等人提出AutoTVM:让AI来编译优化AI系统底层算子

简介: 时的深度学习并没有现在那么火热,也没有现有的 GPU 卷积实现,我在实验室的 GTX 470 上面第一次手写 GPU 卷积用以支持卷积 RBM,当时针对 CPU 十多倍的加速比让我兴奋不已。

Alexnet 横空出世的两年之前,我选择了深度学习作为本科毕设方向。当时的深度学习并没有现在那么火热,也没有现有的 GPU 卷积实现,我在实验室的 GTX 470 上面第一次手写 GPU 卷积用以支持卷积 RBM,当时针对 CPU 十多倍的加速比让我兴奋不已。虽然最终那段研究经历并没有结果,但是计算本身对于机器学习的推动作用却深深地印在了我的脑海里。


深度学习系统支是推动进步的引擎,而在引擎的核心,则是像 cuDNN 这样的针对硬件的高效算子实现。每一个高效的算子库的背后都是大量工程的工程努力。虽然我自己已经从事了几年深度学习系统的工作,如何实现高效的硬件代码始终对于我来说是一个头疼的问题。最近的深度学习系统趋势开始进行更多的高层优化:包括探索从不同的数据表示,精度和算子融合等各个方面,而这些优化势必会带来更多的算子版本需要去优化,这无疑是一个非常大的工程问题。我们还需要把这个问题乘上包括移动芯片,移动 GPU 和 AI 加速器等等后端硬件的种类。针对每一个平台都去实现一遍底层的优化代价无疑会非常大。


我们希望利用机器学习本身去解决这个问题,以深度学习编译器 TVM 为基础自动化地优化深度学习算子性能。写到这里,第一个大家会问的问题是为什么机器有可能会比手工做的优化要好。其实具体原因也很简单,一个人的精力是有限的,我们可以针对几个特定的场景去做一些优化。而机器有无限的精力可以针对每一种类型,数据表示,算子融合和实际的输入尺寸做特定的调整。像算子融合,这样的优化必须要利用自动代码生成才可以做到。所以机器在一定程度上可以取巧。


如何可以让机器匹配手写优化性能


思路非常直接:


  1. 建立一个足够大的搜索空间,保证可能的人工手写优化全部包含在这个搜索空间里面
  2. 快速地搜索这个这个空间,获取优化的实现


这两个想法很简单,其实在两年之前我们基本上就有了这一个解决问题的蓝图,但是执行都非常困难。第一个问题是如何建立足够大的搜索空间,使得其可以包含人可能达到的手写优化。这个在之前 TVM 的介绍里面我们提到过,我们通过参考改进 Halide 的 schedule 编程源语,加入了对于 GPU,加速器的抽象支持,通过一年的努力使得搜索空间基本可以匹配手写优化的性能。值得指出的是手工的优化可以非常多样性,并不是所有的优化都可以被简单的一个固定 pattern 总结。这也是之前很多自动代码生成框架无法达到比较好的效果的一个原因。我们也需要不断地总结抽象的优化规律,加入到 TVM 的原语中。另外在必要的时候我们也可以通过 tensorize 这个抽象可以插入一些手工优化的 micro kernel,但是依然使用框架来做外层调度,达到最好的效果。


有个足够好的搜索空间,剩下的问题是如何在几十亿的可能性里面去选择比较好的实现。这里有几种常见的做法。传统的高性能计算库会采用 Auto Tuning,也就是把可能的参数都尝试一遍。这样做的潜在问题是空间太大之后枚举开销过高。另外一种常见的做法是类似于数据库的做法,针对程序建立一个代价估价函数,然后利用估价函数来搜索。这个做法可能碰到的主要问题是估价函数不一定可以估计准确,并且针对每个新的硬件特性必须要重新设计估价函数。


我们的利用机器学习来学习程序空间的代价估价函数。具体地说,探索程序在一开始会随机地选取一些设定,直接到硬件上面去运行生成的代码,再通过得到的反馈数据来更新我们的程序代价估计函数。这里面比较有趣的一点是模型的可迁移性。因为真正的深度学习系统需要优化许多不一样输入类型,输入形状的算子。一个可迁移的模型可以通过学习已经看到过的算子优化记录来预测新的目标的代价,导致最后的搜索时间可以大幅降低。


其实在这个整个优化的过程中机器学习算法只是起到了重要但是只是一部分的作用。在一些如 ARM 我们的先验模版比较强的情况下,随机搜索就可以达到非常不错的效果。但是重要的是我们需要建立集群化,自动化,python 可以对接的框架来做这些实验。这里特别提一下 TVM 最近引入的 RPC tracker,支持了这一个功能,才可以使得我们可以在多种设备上进行实验。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
1月前
|
人工智能 监控 安全
提效40%?揭秘AI驱动的支付方式“一键接入”系统
本项目构建AI驱动的研发提效系统,通过Qwen Coder与MCP工具链协同,实现跨境支付渠道接入的自动化闭环。采用多智能体协作模式,结合结构化Prompt、任务拆解、流程管控与安全约束,显著提升研发效率与交付质量,探索大模型在复杂业务场景下的高采纳率编码实践。
348 26
提效40%?揭秘AI驱动的支付方式“一键接入”系统
|
1月前
|
人工智能 自然语言处理 前端开发
最佳实践2:用通义灵码以自然语言交互实现 AI 高考志愿填报系统
本项目旨在通过自然语言交互,结合通义千问AI模型,构建一个智能高考志愿填报系统。利用Vue3与Python,实现信息采集、AI推荐、专业详情展示及数据存储功能,支持响应式设计与Supabase数据库集成,助力考生精准择校选专业。(239字)
193 12
|
1月前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
307 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
30天前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
187 6
|
1月前
|
人工智能 JSON 安全
Claude Code插件系统:重塑AI辅助编程的工作流
Anthropic为Claude Code推出插件系统与市场,支持斜杠命令、子代理、MCP服务器等功能模块,实现工作流自动化与团队协作标准化。开发者可封装常用工具或知识为插件,一键共享复用,构建个性化AI编程环境,推动AI助手从工具迈向生态化平台。
337 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
拔俗当AI成为你的“心灵哨兵”:多模态心理风险预警系统如何工作?
AI多模态心理预警系统通过融合表情、语调、文字、绘画等多维度数据,结合深度学习与多模态分析,实时评估心理状态。它像“心灵哨兵”,7×24小时动态监测情绪变化,发现抑郁、焦虑等风险及时预警,兼顾隐私保护,助力早期干预,用科技守护心理健康。(238字)
|
1月前
|
存储 人工智能 自然语言处理
拔俗AI产投公司档案管理系统:让数据资产 “活” 起来的智能助手
AI产投档案管理系统通过NLP、知识图谱与加密技术,实现档案智能分类、秒级检索与数据关联分析,破解传统人工管理效率低、数据孤岛难题,助力投资决策提效与数据资产化,推动AI产投数字化转型。
|
1月前
|
人工智能 算法 数据安全/隐私保护
拔俗AI多模态心理风险预警系统:用科技守护心理健康的第一道防线
AI多模态心理风险预警系统通过语音、文本、表情与行为数据,智能识别抑郁、焦虑等心理风险,实现早期干预。融合多源信息,提升准确率,广泛应用于校园、企业,助力心理健康服务从“被动响应”转向“主动预防”,为心灵筑起智能防线。(238字)
|
1月前
|
人工智能 搜索推荐 Cloud Native
拔俗AI助教系统:教师的"超级教学秘书",让每堂课都精准高效
备课到深夜、批改作业如山?阿里云原生AI助教系统,化身“超级教学秘书”,智能备课、实时学情分析、自动批改、精准辅导,为教师减负增效。让课堂从经验驱动转向数据驱动,每位学生都被看见,教育更有温度。
|
1月前
|
机器学习/深度学习 人工智能 监控
拔俗AI智能营运分析助手软件系统:企业决策的"数据军师",让经营从"拍脑袋"变"精准导航"
AI智能营运分析助手打破数据孤岛,实时整合ERP、CRM等系统数据,自动生成报表、智能预警与可视化决策建议,助力企业从“经验驱动”迈向“数据驱动”,提升决策效率,降低运营成本,精准把握市场先机。(238字)