这家公司正在影响大公司决策,还开发了一款机器学习优化引擎

简介: 在斯坦福运筹学博士、杉数科技联合创始人兼 CTO 王子卓看来,人工智能和运筹学都能通过数据帮助人们解决实际问题。但与人工智能专注于预测、识别等功能的准确性相比,运筹学更在意的是给出商业、金融等场景下完整的解决方案,解决具体的行业问题。


「人工智能会提供偏早期的功能,比如从数据到规律。在规律之后,从规律到决策是运筹学的范畴。」


在斯坦福运筹学博士、杉数科技联合创始人兼 CTO 王子卓看来,人工智能和运筹学都能通过数据帮助人们解决实际问题。但与人工智能专注于预测、识别等功能的准确性相比,运筹学更在意的是给出商业、金融等场景下完整的解决方案,解决具体的行业问题。


微信图片_20211128150247.jpg

杉数将自己定义为在数据科学和运筹学之间的数据化决策公司


在供应链、物流、车辆调配等具体应用场景中,人工智能技术正在与运筹学等学科共同协作。或许以数据化决策公司杉数科技为例,可以一窥两者的相似与不同。


以 TSP 问题为例,了解运筹学的决策方式


在 Wikipedia 中,对运筹学的解释是「一门应用数学学科,利用统计学和数学模型等方法,寻找复杂问题中的最佳或近似最佳的解答」。具体来说,运筹学是一门研究怎样处理事情更有效的学科(因此达成「优化」或「最优化」常常是运筹学的目标),关注的往往是当今社会经济发展的热点,如航空公司的定价、超售问题,物流中的调度问题,共享经济中的资源调配问题等等。


但凡涉及「决策」,就会有运筹学的用武之处。起源于第二次世界大战的运筹学,是因英美两国为有效配置资源,召集科学家研究军事作业规划而诞生。团队的研究成果帮助盟军打赢「不列颠空战」、「北大西洋战争」、「太平洋岛屿战争」,战后研究成果转移为和平用途。如今,从管理、金融、计算机、军事到日常生活的具体问题,运筹学都能给出可实施的解决方案。


想要更形象的理解运筹学,旅行推销员问题(Travelling salesman problem, TSP)是个不错的例子。作为运筹学经典模型之一,它描述的是「给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路」。


微信图片_20211128150252.jpg

1930 年,TSP 问题被首次形式化,成为最优化中研究最深入的问题,许多优化方法都以此为基准


运筹学的解决方法,是先将 TSP 问题用数学形式写出,即构建模型;第二步则是通过模型算出哪个线路可以达成预定目标,如优化时间、遍历所有城市等等,即算法。在现实生活中,TSP 问题往往有很多附加条件,比如必须在某时间窗口前往某城市,或者必须先前往 A 城市才能去 B 城市等等,这些约束条件同样需要反应在构建的模型中。


「对于现实中的项目,需要根据实际业务场景需求提出的合适模型,这些模型往往是在经典模型上作修改。怎么修改模型会最有效、能求解,正是决策学背景的用武之处。」


微信图片_20211128150256.jpg

设计食品摊点网络同样是运筹学适用场景之一,杉数的成员曾帮助美国著名橄榄球队 49 人队的主场球馆 Levis Stadium 设计最优的食物快送摊点网络, 解决食品摊点位置的部署、送货员的数量和安排等问题

除了 TSP,运筹学还有不少适用于不同情况和场景的模型,如多目标规划模型、整数规划模型、存储模型、排队模型等等。这些模型对应着商品定价、电网的布局和分配、空铁的时刻表安排、信用卡额度评估、业务转化率提升等等重要的实际应用。


电商、金融、供应链,杉数的「三大首选行业」

在上世纪 90 年代,人们认为用运筹学解决问题最为耗时的部分,是收集数据和建立模型。如今数据量大幅提升,不仅收集数据不再是困扰,更是运筹学能在近几年快速发展的原因之一。


「运筹学在一些经典场景下有比较成熟的模型,但现实是不断有新情况产生。比如同样是路径优化问题,由于共享经济产生了拼车等一系列新的业务点,就不再是完全的经典模型。新的决策、新的约束要加入其中,对模型的修改也是核心难点。决策学的背景能够帮助解决怎么建立模型、怎么满足业务需求和怎么求解。从项目角度看,这的确是需要花时间的过程。


目前,杉数科技主要涉及三种决策支持服务:收益管理、风险管理、供应链管理。收益管理主要应用在电商、金融领域,通过交易数据、行为数据、竞争数据等多维度数据找到不同场景下最优定价和销售策略,在不增加流量投入的前提下提升销售收入;风险管理是针对金融等行业客户,提供从精准营销、征信、高危交易识别到不良资产处置的完整服务;供应链管理则包括订单、库存、仓库、货运、配送等各个环节提供优化方案,在提升供应链的响应速度和柔性的同时,帮助企业控制成本。


微信图片_20211128150300.jpg图为收益管理中促销管理的解决方案之一,寻找决策是一个复杂又系统的过程


2015 年底,杉数科技的前身「内点科技」成立,便开始市场探索。到 2016 年 7 月正式成立,再到如今,杉数的客户从电商巨头、网约车平台到金融平台、银行等等均有涉及。


对于为什么选择电商、金融和供应链作为首先进入的行业,杉数有自己的考虑。第一是行业应用背景广泛,有足够大的市场空间;第二是有优势和积累的行业,在过往的工作中接触较多、经验丰富。这三个行业刚好应用广泛,同时团队成员都有相关积累——波音公司的货运路线规划、美国运通卡的反欺诈、IBM 解决方案报价系统、AOL 广告投放优化等案例中都有团队成员的身影。


不过短短一年多时间,杉数是如何进入这些「大行业」的?在 CTO 王子卓看来,搞定这些大客户似乎并没有多困难,「我们接触这些企业时,他们之前可能对运筹学接触很少、不够了解,但只要一说我们在做的、适用的场景和模型,就会发现都是他们想要的东西。」


目前杉数以为「大公司」提供决策解决方案为主,但「接项目」并不会是他们的最终模式。「我们希望对行业加深了解后,以标准化的方式服务行业,希望能将提炼出来的东西产品化、软件化、SaaS 平台化,能让更多人使用。」


运筹学与人工智能的交汇

与人工智能学科的发展轨迹相似,运筹学也曾在 50、60 年代经历过热恋期,随后坠入冷淡。直到近 10 年来,新行业的产生和数据的发展,为运筹学的重新崛起带来不少积极影响。


专家系统曾是运筹学与人工智能的交汇点之一,如今两者的交汇更多表现在不同维度的互相支撑。回到最初的 TSP 问题,现实生活中人们往往会面对大量不确定性,如路程时间的不同、是否堵车等,机器学习强大的预测功能会在这些部分发挥作用,在其他模型中也同样如此。运筹学的优化思想则为神经网络、图像分割等提供启迪。


从应用上看,定价系统、推荐系统、风控系统都有人工智能和运筹学的身影。那与深度神经网络这类难以解释的模型相比,运筹学模型的可解释性会更好吗?「从运筹学的角度看,解释性体现在决策能带来的变化,走这条路要花一个小时,其他的路需要 1 小时 10 分钟,决策本身就是可以解释的。」运筹学本身没有解释性这个概念,因为它所提供的是不同决策对目标的影响。


在为企业提供决策支撑的同时,杉数还在进行机器学习优化引擎的开发。与 H2o.ai 类似,这款优化引擎可供各类机器学习方案调用,提升学习效率。目前,杉数已经完成回归类分析、分类及变种问题上的算法开发,仍在开发更多场景、优化并行效率,预计将在今年 7 月正式发布。


「这本质上还是优化问题,机器学习领域的人重点大多放在什么模型比较好,往往忽视了模型建立之后怎么找到最好参数的过程。小的问题运算速度无所谓,大的问题效率就变得很重要,我们团队的背景正是专门研究优化算法效率的。」


微信图片_20211128150304.jpg

数据化决策的三个关键杠杆


目前杉数团队共有 40 人左右,包括科学家、算法工程师、IT 工程师等等。与大部分创业团队不同,杉数拥有庞大的科学家团队。无论在优化算法、数据还是金融,杉数都有斯坦福大学、哈佛大学、布朗大学等教育背景的科学家作为支撑。


杉数的创始团队均为斯坦福博士,其中首席科学家葛冬冬目前任上海财经大学交叉科学研究院院长,CTO 王子卓 24 岁即博士毕业,两人均为斯坦福大学终身讲席教授叶荫宇的学生。叶荫宇教授是国际最知名的运筹学专家之一,曾获运筹管理学领域最高奖冯·诺依曼理论奖,也是目前唯一一位华人得主。


「他研究了一辈子运筹学,但归根到底(运筹学的)意义要发挥到实际中去。」老师希望有一家公司能将运筹学推向社会,作为学生的葛冬冬和王子卓以此为前提考虑创业,于是便有了杉数科技。


「这个学科在中国的发展水平还是相对落后,主要原因在于缺乏工业界的应用。一门学科的发展很大程度上取决于社会发展的需要,如果很多公司都需要这个学科 ,它肯定会发展得不错,所以我们希望以此推动整个领域的发展。」

据悉,2016 年 8 月,杉数科技已获得由真格基金及北极光创投联合投资的 210 万美元天使轮融资。微信图片_20211128150454.jpg


微信图片_20211128150308.jpg


在今年的机器之心 GMIS 2017 全球机器智能峰会上,杉数科技首席科学家、上海财经大学交叉科学研究院院长葛冬冬将莅临现场,分享他关于运筹学与人工智能的思考。杉数科技 CTO 王子卓将参与「探索人工智能的应用场景和商业化」 圆桌论坛,与众多工业界嘉宾一同探讨人工智能产品与应用的新方向。


同时本次大会还邀请到 UC Berkeley 计算机科学教授 Stuart Russell、LSTM 之父 Jürgen Schmidhuber 等众多重量级嘉宾。


2017 全球机器智能峰会(GMIS 2017)是由机器之心主办的关注全球人工智能及相关领域的行业盛会,将于 5 月 27 日至 28 日在北京 898 创新空间举行。

 

有关 GMIS 2017 大会的更多亮点,我们接下来将持续为大家展现。在机器智能时代,机器之心诚邀人工智能从业者及爱好者参会。获取大会详情及购票信息,请点击「阅读原文」查看大会官网。

相关文章
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
123 2
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
77 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
6天前
|
存储 分布式计算 算法
企业级推荐开发平台 PAI-Rec
本文介绍了企业推荐系统的关键技术和解决方案。主要内容分为四部分:1) 推荐系统面临的挑战,如数据治理和算法优化;2) 提高开发效率的解决方案,通过配置化和自动化减少重复工作;3) 高性能推荐算法和推理服务,包括GPU优化和特征组合;4) 高效特征管理平台PAI FeatureStore,支持离线和实时特征处理。文中还提到了EasyRecTorch框架,用于加速训练和推理,并分享了如何通过这些工具提升推荐系统的性能和降低成本。
|
19天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
107 15
|
22天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
44 2
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
86 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
73 4
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
72 6
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
55 1
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
163 1
下一篇
开通oss服务