Python数据分析与展示:pandas库统计分析函数-13

简介: Python数据分析与展示:pandas库统计分析函数-13

基本的统计分析函数

适用于Series和DataFrame类型

方法

说明

.sum()

计算数据的总和,按0轴计算,下同

.count()

非NaN值的数量

.mean() .median()

计算数据的算术平均值、算术中位数

.var() .std()

计算数据的方差、标准差

.min().max()

计算数据的最小值、最大值

.describe()

针对0轴(各列)的统计汇总


适用于Series类型

方法

说明

.argmin() .argmax()

计算数据最大值、最小值所在位置的索引位置(自动索引)

.idxmin() .idxmax()

计算数据最大值、最小值所在位置的索引(自定义索引)


数据的累计统计分析

适用于Series和DataFrame类型,累计计算

方法

说明

.cumsum()

依次给出前1、2、…、n个数的和

.cumprod()

依次给出前1、2、…、n个数的积

.cummax()

依次给出前1、2、…、n个数的最大值

.cummin()

依次给出前1、2、…、n个数的最小值


适用于Series和DataFrame类型,滚动计算(窗口计算)

方法

说明

.rolling(w).sum()

依次计算相邻w个元素的和

.rolling(w).mean()

依次计算相邻w个元素的算术平均值

.rolling(w).var()

依次计算相邻w个元素的方差

.rolling(w).std()

依次计算相邻w个元素的标准差

.rolling(w).min() .max()

依次计算相邻w个元素的最小值和最大值

数据的相关性分析

两个事物,表示为X和Y,如何判断它们之间的存在相关性?


相关性

•X增大,Y增大,两个变量正相关

•X增大,Y减小,两个变量负相关

•X增大,Y无视,两个变量不相关


协方差

•协方差>0, X和Y正相关

•协方差<0, X和Y负相关

•协方差=0, X和Y独立无关


pearson相关系数

0.8‐1.0 极强相关

•0.6‐0.8 强相关

•0.4‐0.6 中等程度相关

•0.2‐0.4 弱相关

•0.0‐0.2 极弱相关或无相关

r取值范围[‐1,1]


适用于Series和DataFrame类型


方法

说明

.cov()

计算协方差矩阵

.corr()

计算相关系数矩阵, Pearson、Spearman、Kendall等系数


pandas数据特征分析小结

一组数据的摘要

方法

说明

排序

.sort_index() .sort_values()

基本统计函数

.describe()

累计统计函数

.cum*() .rolling().*()

相关性分析

.corr() .cov()


代码实例

# -*- coding: utf-8 -*-
# @File    : pandas_func.py
# @Date    : 2018-05-20
# pandas基本的统计分析函数
import pandas as pd
import numpy as np
# Series对象
s = pd.Series([9, 8, 7, 6], index=["a", "b", "c", "d"])
print(s)
"""
a    9
b    8
c    7
d    6
dtype: int64
"""
# 数据概要
print(s.describe())
"""
count    4.000000
mean     7.500000
std      1.290994
min      6.000000
25%      6.750000
50%      7.500000
75%      8.250000
max      9.000000
dtype: float64
"""
# 类型
print(type(s.describe()))
# <class 'pandas.core.series.Series'>
# 从概要中取数据
print(s.describe()["count"])
# 4.0
print(s.describe()["max"])
# 9.0
# DataFrame对象
fd = pd.DataFrame(np.arange(12).reshape(3, 4), index=["a", "b", "c"])
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 概要
print(fd.describe())
"""
         0    1     2     3
count  3.0  3.0   3.0   3.0
mean   4.0  5.0   6.0   7.0
std    4.0  4.0   4.0   4.0
min    0.0  1.0   2.0   3.0
25%    2.0  3.0   4.0   5.0
50%    4.0  5.0   6.0   7.0
75%    6.0  7.0   8.0   9.0
max    8.0  9.0  10.0  11.0
"""
# 类型
print(type(fd.describe()))
# <class 'pandas.core.frame.DataFrame'>
# 取出列概要信息
print(fd.describe()[2])
"""
count     3.0
mean      6.0
std       4.0
min       2.0
25%       4.0
50%       6.0
75%       8.0
max      10.0
Name: 2, dtype: float64
"""
# 获取行
print(fd.describe().ix["count"])
"""
0    3.0
1    3.0
2    3.0
3    3.0
Name: count, dtype: float64
"""
# 数据的累计统计分析
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 依次给出前1、2、…、n个数的和
print(fd.cumsum())
"""
    0   1   2   3
a   0   1   2   3
b   4   6   8  10
c  12  15  18  21
"""
# 依次给出前1、2、…、n个数的积
print(fd.cumprod())
"""
   0   1    2    3
a  0   1    2    3
b  0   5   12   21
c  0  45  120  231
"""
# 依次给出前1、2、…、n个数的最大值
print(fd.cummax())
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 依次给出前1、2、…、n个数的最小值
print(fd.cummin())
"""
   0  1  2  3
a  0  1  2  3
b  0  1  2  3
c  0  1  2  3
"""
print(fd)
"""
   0  1   2   3
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
"""
# 相邻2个数求和
print(fd.rolling(2).sum())
"""
      0     1     2     3
a   NaN   NaN   NaN   NaN
b   4.0   6.0   8.0  10.0
c  12.0  14.0  16.0  18.0
"""
# 相邻3个数求和
print(fd.rolling(3).sum())
"""
      0     1     2     3
a   NaN   NaN   NaN   NaN
b   NaN   NaN   NaN   NaN
c  12.0  15.0  18.0  21.0
"""
# 实例,房价增幅与M2增幅的相关性
hprice = pd.Series([3.04, 22.93, 12.75, 22.6, 12.33],
                   index=["2008", "2009", "2010", "2011", "2012"])
m2 = pd.Series([8.18, 18.38, 9.13, 7.82, 6.69],
               index=["2008", "2009", "2010", "2011", "2012"])
print(hprice.corr(m2))
# 0.5239439145220387
"""
## pearson相关系数
0.8‐1.0 极强相关 
•0.6‐0.8 强相关 
•0.4‐0.6 中等程度相关 
•0.2‐0.4 弱相关 
•0.0‐0.2 极弱相关或无相关
"""
# 绘制成图
from matplotlib import pyplot as plt
plt.plot(hprice)
plt.plot(m2)
plt.savefig("price", dpi=600)
plt.show()

a16.1.png



相关文章
|
3天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
16 0
|
2天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
18 7
|
18天前
|
网络协议 数据库连接 Python
python知识点100篇系列(17)-替换requests的python库httpx
【10月更文挑战第4天】Requests 是基于 Python 开发的 HTTP 库,使用简单,功能强大。然而,随着 Python 3.6 的发布,出现了 Requests 的替代品 —— httpx。httpx 继承了 Requests 的所有特性,并增加了对异步请求的支持,支持 HTTP/1.1 和 HTTP/2,能够发送同步和异步请求,适用于 WSGI 和 ASGI 应用。安装使用 httpx 需要 Python 3.6 及以上版本,异步请求则需要 Python 3.8 及以上。httpx 提供了 Client 和 AsyncClient,分别用于优化同步和异步请求的性能。
python知识点100篇系列(17)-替换requests的python库httpx
|
2天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
13 3
|
5天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
23 5
|
4天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
15 1
|
13天前
|
数据可视化 数据挖掘 Python
Seaborn 库创建吸引人的统计图表
【10月更文挑战第11天】本文介绍了如何使用 Seaborn 库创建多种统计图表,包括散点图、箱线图、直方图、线性回归图、热力图等。通过具体示例和代码,展示了 Seaborn 在数据可视化中的强大功能和灵活性,帮助读者更好地理解和应用这一工具。
30 3
|
2天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
21 0
|
19天前
|
Linux Android开发 开发者
【Python】GUI:Kivy库环境安装与示例
这篇文章介绍了 Kivy 库的安装与使用示例。Kivy 是一个开源的 Python 库,支持多平台开发,适用于多点触控应用。文章详细说明了 Kivy 的主要特点、环境安装方法,并提供了两个示例:一个简单的 Hello World 应用和一个 BMI 计算器界面。
29 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
70 2