程序员数学(4)--几何图形初步

简介: 本文目录1. 几何2. 平面图形与立体图形3. 直线、射线、线段4. 角5. 角的平分线余角与补角

1. 几何

对酒当歌,人生几何?数学与文学在这个地方有一个精彩的交汇。


几何是研究图形形状、大小、位置关系的学科。


最开始的时候,是从现实世界中的图形出发,构造模拟现实的图形。


后来因为图形的直观性及便于发散思维的特性,从几何图形出发对代数等数学知识的研究反向促进。


因为这背后,都是规律啊,图形化的东西无疑比数字符合,更能把规律表现的优雅。


2. 平面图形与立体图形

各个部分都在同一平面的几何图形,叫做平面图形。例如线段、角、长方形。


各个部分不都在同一平面的几何图形,叫做立体图形。例如长方体、正方体、球体。


3. 直线、射线、线段

经过两点有且只有一条直线。这个是根据直线的定义来的。


如果两个直线有一个公共点,则称这两个直线相交,公共点称为交点。


两点之间,线段最短。


直线上选择一点,改点与一侧的部分称为射线。


4. 角

有公共端点的两条射线组成的图形叫做角,该公共端点称为角的顶点。


把一个周角360等分,每一份为1度。把1度角60等分,每一份为1分。把1分角60等分,每一份为1秒。


5. 角的平分线

从一个角的顶点出发,把这个角分为角度相等的两个角的射线,叫做这个角的平分线。


余角与补角

如果两个角的和等于90度(两个角加起来是个直角),则这两个角互为余角。


如果两个角的和等于180度(两个角加起来是个平角),则这两个角互为补角。

相关文章
|
传感器 数据采集 存储
以下是一个简化的环境监测系统工程概述,并附带有Python代码示例或详解。
以下是一个简化的环境监测系统工程概述,并附带有Python代码示例或详解。
|
Ubuntu 编译器 Linux
交叉编译环境搭建
交叉编译环境搭建
369 0
|
存储 弹性计算 文件存储
NAS 入门与提高系列之典型应用场景|学习笔记
快速学习 NAS 入门与提高系列之典型应用场景
NAS 入门与提高系列之典型应用场景|学习笔记
|
SQL 缓存 安全
MyBatis源码-深入理解MyBatis Executor的设计思想
MyBatis源码-深入理解MyBatis Executor的设计思想
137 0
|
机器学习/深度学习 存储 算法
①机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
1553 0
①机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
10天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
359 131
|
10天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
443 131
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话