日志服务Dashboard加速

本文涉及的产品
对象存储 OSS,OSS 加速器 50 GB 1个月
简介: 阿里云日志服务致力于为用户提供统一的可观测性平台,同时支持日志、时序以及Trace数据的查询存储。用户可以基于收集到的各类数据构建统一的监控以及业务大盘,从而及时发现系统异常,感知业务趋势。但是随着收集到的数据量不断增长,特别是遇到业务峰值的时候,大盘报表展示会产生明显的延迟,无法及时查看重要数据。Scheduled SQL支持定时分析数据、存储聚合数据、投影与过滤数据,并将执行的分析结果存入用户指定的日志库或者时序库中,供用户后续分析使用。由于在聚合后数据量将大大小于之前,因而非常适合进行即时数据分析以及大盘展示。

背景

阿里云日志服务致力于为用户提供统一的可观测性平台,同时支持日志、时序以及Trace数据的查询存储。用户可以基于收集到的各类数据构建统一的监控以及业务大盘,从而及时发现系统异常,感知业务趋势。但是随着收集到的数据量不断增长,特别是遇到业务峰值的时候,大盘报表展示会产生明显的延迟,无法及时查看重要数据。Scheduled SQL支持定时分析数据、存储聚合数据、投影与过滤数据,并将执行的分析结果存入用户指定的日志库或者时序库中,供用户后续分析使用。由于在聚合后数据量将大大小于之前,因而非常适合进行即时数据分析以及大盘展示。下面我们以服务的请求成功率为例,介绍下如何基于Scheduled SQL加速大盘报表。

方案

假如我们需要查看以一分钟为粒度,一小时内的请求成功率。在构建报表的时候,需要基于当前不足一分钟的部分数据配置实时报表,而针对之前已满一分钟的历史数据配置历史报表。当然,如果用户觉得一分钟的数据延迟是可以接受的,就可以只配置历史报表,而不需要实时报表。假如当前时间为11:09:47,需要查看10:11:00一直到11:09:00的分钟级请求成功率,以及11:09:00到11:09:47的秒级成功请求率。

日志内容

字段名称

示例

描述

receive_time

1636616663654

时间戳,毫秒级

status

500

http状态码,200表示成功,其余表示失败

error_code

2001

错误码,标识错误原因

message

server is busy

错误描述

action_name

list_shop_product

访问的服务接口

user_agent

chrome

客户浏览器

历史报表

如图所示展示了分钟级的请求成功率,可以通过配置分钟级的ScheduledSQL任务,计算每分钟的成功率,并通过历史报表直接展示。因为只需要直接拉取聚合结果,不需要即时计算,所以展示速度大大提升。

实时报表

如图所示展示了秒级的请求成功率,因为只需要计算不到一分钟的数据,而不是1小时的数据,因而速度也得到的提升。

配置

下面仍然以请求成功率为例,向大家介绍下如何实现通过ScheduledSQL加速报表。

创建目标时序库

首先需要创建目标时序库存储ScheduledSQL的聚合数据。

创建Scheduled SQL任务

在存储服务请求的数据logstore查询界面,输入查询语句,点击查询/分析按钮,在成功执行查询分析之后,点击创建Scheduled SQL按钮。

*|select(__time__ - __time__ %60)astime, sum(IF(status =200,1,0))*1.0/count(*)AS success_ratio  from log groupbytimeorderbytime

计算配置

  1. 填入对应的作业名以及作业描述,写入模式选择日志库导入时序库
  2. 指标列指选择结果中的一列作为时序结果,此处选择success_ratio;
  3. Labels指选择结果中的哪几列作为时序数据的标签,此处留空即可;
  4. 时间列指时序数据的时间,此处选择time;
  5. 目标库选择刚刚创建的目标时序库;

调度配置

因为我们需要查看分钟级别的服务请求成功率,所以调度间隔还有SQL时间窗口均需要以分钟为粒度。用户也可以根据自己的需求进行调整。

  1. 调度间隔选择1分钟;
  2. SQL时间窗口填入@m - 1m ~ @m;
  3. 点击确认创建任务

查看任务详情

在作业菜单中点击Scheduled SQL,即可查看Scheduled SQL任务列表。点击刚刚创建的任务名称即可查看任务执行详情。在任务执行成功之后,我们就可以创建历史报表了。

配置历史报表

在目标时序库查询界面,执行查询语句,点击添加到仪表盘,即可创建历史报表。

*|select promql_query_range('success_ratio')from metrics limit1000

配置实时报表

在存储服务请求的数据logstore查询界面,输入查询语句,并选择时间范围为1分钟,点击添加到仪表盘创建实时报表:

*|select  __time__ astime, sum(IF(status =200,1,0))*1.0/count(*)AS success_ratio  from log groupbytimeorderbytime

总结

Scheduled SQL为用户周期性的进行分析数据、存储聚合数据、投影与过滤数据提供了较大的便利。用户还可以使用Scheduled SQL定时执行聚合任务,减少即时查询所需要的数据量,从而加速大盘展示。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
EMQ
|
JSON 安全 API
EMQX Enterprise 5.3 发布:审计日志、Dashboard 访问权限控制与 SSO 一站登录
EMQX Enterprise 5.3.0 版本已正式发布! 新版本带来多个企业特性的更新,包括审计日志,Dashboard RBAC 权限控制,以及基于 SSO(单点登录)的一站式登录,提升了企业级部署的安全性、管理性和治理能力。此外,新版本还进行了多项改进以及 BUG 修复,进一步提升了整体性能和稳定性。
EMQ
524 69
|
Web App开发 监控
日志服务(原SLS)发布:仪表盘(Dashboard)功能
日志服务在9月推出仪表盘(Dashboard)功能,支持将查询分析语句进行可视化展示。
6936 0
|
存储 监控 数据库
16【在线日志分析】之grafana-4.1.1 Install和新建日志分析的DashBoard
1.下载wget https://grafanarel.s3.amazonaws.com/builds/grafana-4.1.1-1484211277.linux-x64.
1190 0
|
XML 安全 Java
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
本文介绍了Java日志框架的基本概念和使用方法,重点讨论了SLF4J、Log4j、Logback和Log4j2之间的关系及其性能对比。SLF4J作为一个日志抽象层,允许开发者使用统一的日志接口,而Log4j、Logback和Log4j2则是具体的日志实现框架。Log4j2在性能上优于Logback,推荐在新项目中使用。文章还详细说明了如何在Spring Boot项目中配置Log4j2和Logback,以及如何使用Lombok简化日志记录。最后,提供了一些日志配置的最佳实践,包括滚动日志、统一日志格式和提高日志性能的方法。
4350 31
【日志框架整合】Slf4j、Log4j、Log4j2、Logback配置模板
|
9月前
|
监控 容灾 算法
阿里云 SLS 多云日志接入最佳实践:链路、成本与高可用性优化
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
980 54
|
监控 安全 Apache
什么是Apache日志?为什么Apache日志分析很重要?
Apache是全球广泛使用的Web服务器软件,支持超过30%的活跃网站。它通过接收和处理HTTP请求,与后端服务器通信,返回响应并记录日志,确保网页请求的快速准确处理。Apache日志分为访问日志和错误日志,对提升用户体验、保障安全及优化性能至关重要。EventLog Analyzer等工具可有效管理和分析这些日志,增强Web服务的安全性和可靠性。
450 9
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
942 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
12月前
|
存储 缓存 关系型数据库
图解MySQL【日志】——Redo Log
Redo Log(重做日志)是数据库中用于记录数据页修改的物理日志,确保事务的持久性和一致性。其主要作用包括崩溃恢复、提高性能和保证事务一致性。Redo Log 通过先写日志的方式,在内存中缓存修改操作,并在适当时候刷入磁盘,减少随机写入带来的性能损耗。WAL(Write-Ahead Logging)技术的核心思想是先将修改操作记录到日志文件中,再择机写入磁盘,从而实现高效且安全的数据持久化。Redo Log 的持久化过程涉及 Redo Log Buffer 和不同刷盘时机的控制参数(如 `innodb_flush_log_at_trx_commit`),以平衡性能与数据安全性。
684 5
图解MySQL【日志】——Redo Log

热门文章

最新文章

相关产品

  • 日志服务