如何构建云原生的开源大数据平台 | InMobi 基于阿里云开源大数据服务的最佳实践

简介: 随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。


随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。

288103CD-01F9-43de-842D-B960F73F7FE1.png

本文主要分享 InMobi 基于阿里云开源大数据服务的最佳实践


分享嘉宾: Murray Zhu,InMobi 技术运维负责人

视频地址:https://yqh.aliyun.com/live/bigdataop


一、公司介绍

InMobi AI 和效果驱动的全球化移动广告和营销科技平台,基于全球对接的海量 App和用户,为国内品牌和 App 提供移动广告推广和营销科技服务,为App开发者提供 App广告商业化变现服务。该平台成立于2007年,在2011年进入中国市场,以研发技术为导向,在移动端广告平台行业占据重量级地位,其专业技术在全球和中国都非常领先。InMobi 通过分布全球的23个国家和地区的本地化服务团队,触达10亿以上月活跃独立用户,提供数万个以上精细化受众分类,上千种维度标签,千万级用户自定义样本库的数据和 LBS 服务为基础的精准移动端广告。


作为一家全球领先的科技公司,InMobi CNBC 评为2019年度“全球50大颠覆公司”之一,亦被 Fast Company 杂志评为2018年度“最创新”公司之一。


二、InMobi 中国大数据解决方案

image.png

上图是 InMobi 原有的中国大数据集群架构,主要分为数据的摄入层、存储层、计算层,以及报表层。首先通过数据摄入层摄入广告前端的各种广告数据,特别是 RR 等数据,然后将数据存储到离线的 HDFS 大数据集群,再通过计算集群进行数据任务的处理,最后将处理完的任务,通过报表的方式展现给终端用户。

 

在大数据集群的运维过程中,一些问题逐渐暴露:

  • 大数据集群构建在 IDC,不利于资源伸缩和扩展

当计算资源不够用的时候,需要调配甚至暂停一些任务,优先跑重要的任务,对报表的生成并不友好

  • 数据报表实时性较差

数据报表实时性差,无法匹配业务方报表分钟级展现的需求

  • 用于处理实时报表数据的 Vertica 数据库,价格较为昂贵


三、InMobi 中国大数据集群优化方案

大数据集群的优化思考

InMobi 基于上述三个典型问题,针对优化方案进行了如下思考:

  • 构建混合云架构,引入阿里云大数据服务,解决伸缩的存储和计算资源扩展性问题

在云上开启更多大数据服务节点,通过大数据服务的弹性能力扩展短缺的计算和存储能力。特别是针对一些临时性的,如618、双十一等资源使用较为紧张的场景。

  • 通过 EMRClickHouse 替换 Vertica 数据库,提升实时报表数据查询效率,并节省成本

ClickHouse 作为一个开源产品,目前已经大规模的在中国各种互联网公司的业务场景落地

  • 构建基于 Flink+EMRClickHouse 的实时数仓体系,彻底解决数据报表实时性问题

解决数据报表实时性问题,至少达到分钟级,针对有特殊要求的报表达到秒级。


大数据集群的具体优化方案

  • 实时数仓和离线数仓解耦
  • IDC 大数据集群中,将离线数据报表资源和实时报表资源完全解耦
  • IDC 大数据集群中将离线数据报表任务和实时报表任务完全解耦
  • 重构实时数仓
  • Kafka 日志集群迁移到阿里云
  • 在阿里云上,基于 Flink+EMRClickHouse 重构实时数仓集群
  • IDC 中,将原有 Storm 任务迁移到新的实时数仓集群
  • 优化离线数仓
  • 优化和回收利用 IDC 中的 HDP 大数据集群资源,节省成本;
  • 建立离线数据仓库 Hive
  • 在阿里云上开启新的数据节点,加入到离线大数据集群,扩展存储和计算资源;
  • 在阿里云上构建新的 Flume 集群,将 KafKa 中原始数据落盘到HDFS存储


优化后的大数据集群架构

image.png

如上图所示,优化后的大数据集群架构主要分为两部分:

  • AliCloud(Real Time),阿里云主要负责实时数据的处理。

从 KafKa 中读取rr log,通过 ClickHouse 写入到实时报表,根据业务要求,从 KafKa 中读取有用数据落到 MySQI 和 PostgreSQL 上。

  • IDC (Offline),IDC 主要负责处理离线的数据和报表业务。

通过 Flume 将 KafKa 里面的原始数据全量落盘到整个 HDFS 集群进行存储,然后进行数据分析和数据规整。在离线大数据集群上,将离线报表的业务需求通过 Spark 任务全部跑出,最后再将任务写回到 ClickHouse 中做离线数据报表的展现。


四、未来更多的技术探索和落地

基于 Flink+Hologres 构建流批一体的实时数仓

众所周知,Hologres 的架构是存算分离的。计算完全部署在 K8s 上,存储可以使用共享存储,根据业务需求选择 HDFS 或者云上的 OSS,实现资源的弹性扩缩容,完美解决资源不够带来的并发问题,非常适合 InMobi 的广告业务场景。


此外,Flink 做流、批数据的 ETL 处理,将处理的数据写入 Hologres 做统一的存储和查询,实现业务端直接对接 Hologres 提供在线服务,大大提高生产效率。



以上就是 Inmobi 基于阿里云开源大数据服务的最佳实践的全部内容。





相关信息


点击链接观看直播回放,超多活动信息等你来

https://yqh.aliyun.com/live/bigdataop

⭐更多EMR相关信息,欢迎前往EMR产品详情页:    https://www.aliyun.com/product/emapreduce


欢迎钉钉扫码加入EMR相关产品交流群,为您提供最新的产品直播、产品活动及技术支持!

image.psd (9).png

相关文章
|
9月前
|
存储 缓存 分布式计算
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
本文将深入探讨基于 StarRocks 和 Iceberg 构建的云原生湖仓分析技术,详细解析两者结合如何实现高效的查询性能优化。内容涵盖 StarRocks Lakehouse 架构、与 Iceberg 的性能协同、最佳实践应用以及未来的发展规划,为您提供全面的技术解读。 作者:杨关锁,北京镜舟科技研发工程师
StarRocks x Iceberg:云原生湖仓分析技术揭秘与最佳实践
|
9月前
|
存储 Cloud Native 关系型数据库
PolarDB开源:云原生数据库的架构革命
本文围绕开源核心价值、社区运营实践和技术演进路线展开。首先解读存算分离架构的三大突破,包括基于RDMA的分布式存储、计算节点扩展及存储池扩容机制,并强调与MySQL的高兼容性。其次分享阿里巴巴开源治理模式,涵盖技术决策、版本发布和贡献者成长体系,同时展示企业应用案例。最后展望技术路线图,如3.0版本的多写多读架构、智能调优引擎等特性,以及开发者生态建设举措,推荐使用PolarDB-Operator实现高效部署。
443 4
|
11月前
|
Kubernetes Cloud Native 开发者
alibaba-load-balancer-controller v1.2.0:开启云原生网关开源新篇章!敬请探索!
alibaba-load-balancer-controller v1.2.0:开启云原生网关开源新篇章!敬请探索!
315 61
|
9月前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB开源:云原生数据库的新篇章
阿里云自研的云原生数据库PolarDB于2023年5月正式开源,采用“存储计算分离”架构,具备高性能、高可用及全面兼容性。其开源版本提供企业级数据库解决方案,支持MySQL、PostgreSQL和Oracle语法,适用于高并发OLTP、核心业务系统等场景。PolarDB通过开放治理与开发者工具构建完整生态,并展望更丰富的插件功能与AI集成,为中国云原生数据库技术发展贡献重要力量。
721 17
|
人工智能 Cloud Native 安全
从云原生到 AI 原生,网关的发展趋势和最佳实践
本文整理自阿里云智能集团资深技术专家,云原生产品线中间件负责人谢吉宝(唐三)在云栖大会的精彩分享。讲师深入浅出的分享了软件架构演进过程中,网关所扮演的各类角色,AI 应用的流量新特征对软件架构和网关所提出的新诉求,以及基于阿里自身实践所带来的开源贡献和商业能力。
999 100
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
874 6
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
Kubernetes Cloud Native Ubuntu
庆祝 .NET 9 正式版发布与 Dapr 从 CNCF 毕业:构建高效云原生应用的最佳实践
2024年11月13日,.NET 9 正式版发布,Dapr 从 CNCF 毕业,标志着云原生技术的成熟。本文介绍如何使用 .NET 9 Aspire、Dapr 1.14.4、Kubernetes 1.31.0/Containerd 1.7.14、Ubuntu Server 24.04 LTS 和 Podman 5.3.0-rc3 构建高效、可靠的云原生应用。涵盖环境准备、应用开发、Dapr 集成、容器化和 Kubernetes 部署等内容。
779 6
|
监控 Cloud Native 持续交付
云原生架构下微服务的最佳实践与挑战####
【10月更文挑战第20天】 本文深入探讨了云原生架构在现代软件开发中的应用,特别是针对微服务设计模式的最优实践与面临的主要挑战。通过分析容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,阐述了如何高效构建、部署及运维微服务系统。同时,文章也指出了在云原生转型过程中常见的难题,如服务间的复杂通信、安全性问题以及监控与可观测性的实现,为开发者和企业提供了宝贵的策略指导和解决方案建议。 ####
330 5
|
Kubernetes Cloud Native 持续交付
云原生架构下的微服务设计原则与最佳实践##
在数字化转型的浪潮中,云原生技术以其高效、灵活和可扩展的特性成为企业IT架构转型的首选。本文深入探讨了云原生架构的核心理念,聚焦于微服务设计的关键原则与实施策略,旨在为开发者提供一套系统性的方法论,以应对复杂多变的业务需求和技术挑战。通过分析真实案例,揭示了如何有效利用容器化、持续集成/持续部署(CI/CD)、服务网格等关键技术,构建高性能、易维护的云原生应用。文章还强调了文化与组织变革在云原生转型过程中的重要性,为企业顺利过渡到云原生时代提供了宝贵的见解。 ##
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。