如何构建云原生的开源大数据平台 | InMobi 基于阿里云开源大数据服务的最佳实践

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。


随着开源技术与云原生的高度融合,阿里云开源大数据平台在功能性、易用性、安全性上积累了丰富的实践经验,已成功服务数千家企业,助力其聚焦自身核心业务优势,缩短开发周期、简化运维难度,拓展更多业务创新。10月29日,阿里云发布“如何构建云原生的开源大数据平台”解决方案,邀请到了来自阿里云、微淼、Inmobi的技术专家为大家现身说法,呈现上云实践。

288103CD-01F9-43de-842D-B960F73F7FE1.png

本文主要分享 InMobi 基于阿里云开源大数据服务的最佳实践


分享嘉宾: Murray Zhu,InMobi 技术运维负责人

视频地址:https://yqh.aliyun.com/live/bigdataop


一、公司介绍

InMobi AI 和效果驱动的全球化移动广告和营销科技平台,基于全球对接的海量 App和用户,为国内品牌和 App 提供移动广告推广和营销科技服务,为App开发者提供 App广告商业化变现服务。该平台成立于2007年,在2011年进入中国市场,以研发技术为导向,在移动端广告平台行业占据重量级地位,其专业技术在全球和中国都非常领先。InMobi 通过分布全球的23个国家和地区的本地化服务团队,触达10亿以上月活跃独立用户,提供数万个以上精细化受众分类,上千种维度标签,千万级用户自定义样本库的数据和 LBS 服务为基础的精准移动端广告。


作为一家全球领先的科技公司,InMobi CNBC 评为2019年度“全球50大颠覆公司”之一,亦被 Fast Company 杂志评为2018年度“最创新”公司之一。


二、InMobi 中国大数据解决方案

image.png

上图是 InMobi 原有的中国大数据集群架构,主要分为数据的摄入层、存储层、计算层,以及报表层。首先通过数据摄入层摄入广告前端的各种广告数据,特别是 RR 等数据,然后将数据存储到离线的 HDFS 大数据集群,再通过计算集群进行数据任务的处理,最后将处理完的任务,通过报表的方式展现给终端用户。

 

在大数据集群的运维过程中,一些问题逐渐暴露:

  • 大数据集群构建在 IDC,不利于资源伸缩和扩展

当计算资源不够用的时候,需要调配甚至暂停一些任务,优先跑重要的任务,对报表的生成并不友好

  • 数据报表实时性较差

数据报表实时性差,无法匹配业务方报表分钟级展现的需求

  • 用于处理实时报表数据的 Vertica 数据库,价格较为昂贵


三、InMobi 中国大数据集群优化方案

大数据集群的优化思考

InMobi 基于上述三个典型问题,针对优化方案进行了如下思考:

  • 构建混合云架构,引入阿里云大数据服务,解决伸缩的存储和计算资源扩展性问题

在云上开启更多大数据服务节点,通过大数据服务的弹性能力扩展短缺的计算和存储能力。特别是针对一些临时性的,如618、双十一等资源使用较为紧张的场景。

  • 通过 EMRClickHouse 替换 Vertica 数据库,提升实时报表数据查询效率,并节省成本

ClickHouse 作为一个开源产品,目前已经大规模的在中国各种互联网公司的业务场景落地

  • 构建基于 Flink+EMRClickHouse 的实时数仓体系,彻底解决数据报表实时性问题

解决数据报表实时性问题,至少达到分钟级,针对有特殊要求的报表达到秒级。


大数据集群的具体优化方案

  • 实时数仓和离线数仓解耦
  • IDC 大数据集群中,将离线数据报表资源和实时报表资源完全解耦
  • IDC 大数据集群中将离线数据报表任务和实时报表任务完全解耦
  • 重构实时数仓
  • Kafka 日志集群迁移到阿里云
  • 在阿里云上,基于 Flink+EMRClickHouse 重构实时数仓集群
  • IDC 中,将原有 Storm 任务迁移到新的实时数仓集群
  • 优化离线数仓
  • 优化和回收利用 IDC 中的 HDP 大数据集群资源,节省成本;
  • 建立离线数据仓库 Hive
  • 在阿里云上开启新的数据节点,加入到离线大数据集群,扩展存储和计算资源;
  • 在阿里云上构建新的 Flume 集群,将 KafKa 中原始数据落盘到HDFS存储


优化后的大数据集群架构

image.png

如上图所示,优化后的大数据集群架构主要分为两部分:

  • AliCloud(Real Time),阿里云主要负责实时数据的处理。

从 KafKa 中读取rr log,通过 ClickHouse 写入到实时报表,根据业务要求,从 KafKa 中读取有用数据落到 MySQI 和 PostgreSQL 上。

  • IDC (Offline),IDC 主要负责处理离线的数据和报表业务。

通过 Flume 将 KafKa 里面的原始数据全量落盘到整个 HDFS 集群进行存储,然后进行数据分析和数据规整。在离线大数据集群上,将离线报表的业务需求通过 Spark 任务全部跑出,最后再将任务写回到 ClickHouse 中做离线数据报表的展现。


四、未来更多的技术探索和落地

基于 Flink+Hologres 构建流批一体的实时数仓

众所周知,Hologres 的架构是存算分离的。计算完全部署在 K8s 上,存储可以使用共享存储,根据业务需求选择 HDFS 或者云上的 OSS,实现资源的弹性扩缩容,完美解决资源不够带来的并发问题,非常适合 InMobi 的广告业务场景。


此外,Flink 做流、批数据的 ETL 处理,将处理的数据写入 Hologres 做统一的存储和查询,实现业务端直接对接 Hologres 提供在线服务,大大提高生产效率。



以上就是 Inmobi 基于阿里云开源大数据服务的最佳实践的全部内容。





相关信息


点击链接观看直播回放,超多活动信息等你来

https://yqh.aliyun.com/live/bigdataop

⭐更多EMR相关信息,欢迎前往EMR产品详情页:    https://www.aliyun.com/product/emapreduce


欢迎钉钉扫码加入EMR相关产品交流群,为您提供最新的产品直播、产品活动及技术支持!

image.psd (9).png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
运维 Cloud Native 应用服务中间件
阿里云微服务引擎 MSE 及 云原生 API 网关 2024 年 10 月产品动态
阿里云微服务引擎 MSE 面向业界主流开源微服务项目, 提供注册配置中心和分布式协调(原生支持 Nacos/ZooKeeper/Eureka )、云原生网关(原生支持Higress/Nginx/Envoy,遵循Ingress标准)、微服务治理(原生支持 Spring Cloud/Dubbo/Sentinel,遵循 OpenSergo 服务治理规范)能力。API 网关 (API Gateway),提供 APl 托管服务,覆盖设计、开发、测试、发布、售卖、运维监测、安全管控、下线等 API 生命周期阶段。帮助您快速构建以 API 为核心的系统架构.满足新技术引入、系统集成、业务中台等诸多场景需要
|
1月前
|
分布式计算 大数据 Serverless
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
在2024云栖大会开源大数据专场上,阿里云宣布推出实时计算Flink产品的新一代向量化流计算引擎Flash,该引擎100%兼容Apache Flink标准,性能提升5-10倍,助力企业降本增效。此外,EMR Serverless Spark产品启动商业化,提供全托管Serverless服务,性能提升300%,并支持弹性伸缩与按量付费。七猫免费小说也分享了其在云上数据仓库治理的成功实践。其次 Flink Forward Asia 2024 将于11月在上海举行,欢迎报名参加。
178 1
云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展
|
1月前
|
运维 Cloud Native 数据可视化
阿里云云原生应用组装平台BizWorks满分通过最新评估
阿里云BizWorks满分通过《基于云计算的业务组装平台能力成熟度模型》评测,获得优秀级(最高等级),广东移动联合阿里云BizWorks团队开展的组装式应用实践获得第三届“鼎新杯”数字化转型应用优秀案例一等奖。
184 3
|
1月前
|
运维 Cloud Native 应用服务中间件
阿里云微服务引擎 MSE 及 云原生 API 网关 2024 年 09 月产品动态
阿里云微服务引擎 MSE 面向业界主流开源微服务项目, 提供注册配置中心和分布式协调(原生支持 Nacos/ZooKeeper/Eureka )、云原生网关(原生支持Higress/Nginx/Envoy,遵循Ingress标准)、微服务治理(原生支持 Spring Cloud/Dubbo/Sentinel,遵循 OpenSergo 服务治理规范)能力。API 网关 (API Gateway),提供 APl 托管服务,覆盖设计、开发、测试、发布、售卖、运维监测、安全管控、下线等 API 生命周期阶段。帮助您快速构建以 API 为核心的系统架构.满足新技术引入、系统集成、业务中台等诸多场景需要
|
1月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
23天前
|
运维 Cloud Native 持续交付
云原生技术解析:从IO出发,以阿里云原生为例
【10月更文挑战第24天】随着互联网技术的不断发展,传统的单体应用架构逐渐暴露出扩展性差、迭代速度慢等问题。为了应对这些挑战,云原生技术应运而生。云原生是一种利用云计算的优势,以更灵活、可扩展和可靠的方式构建和部署应用程序的方法。它强调以容器、微服务、自动化和持续交付为核心,旨在提高开发效率、增强系统的灵活性和可维护性。阿里云作为国内领先的云服务商,在云原生领域有着深厚的积累和实践。
51 0
|
2月前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
针对软件供应链的攻击事件在以每年三位数的速度激增,其中三方或开源软件已经成为攻击者关注的重要目标,其攻击方式和技术也在不断演进。通过供应链的传播,一个底层软件包的漏洞的影响范围可以波及世界。企业亟需更加标准和完善的供应链风险洞察和防护机制。本文将结合最佳实践的形式,面向容器应用完整的生命周期展示如何基于容器服务ACK/ACR/ASM助力企业构建云原生软件供应链安全。
|
2月前
|
人工智能 Kubernetes Cloud Native
阿里云容器服务,智算时代云原生操作系统
今年是Kubernetes十周年,在这10年间。我们已经看到其成长为云原生操作系统,向下高效调度多种算力资源,屏蔽基础设施差异,向上提供统一编程接口,支持多样化工作负载。阿里云容器服务产品已经覆盖了从公共云、边缘云、到本地数据中心的各个场景。让所有需要云能力的地方,都有统一的容器基础设施。
阿里云容器服务,智算时代云原生操作系统
|
3天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
5天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。