Paper:自动驾驶领域SAE标准之《道路机动车辆驾驶自动化系统相关术语的分类和定义》官方英文原文翻译与解读(二)

简介: Paper:自动驾驶领域SAE标准之《道路机动车辆驾驶自动化系统相关术语的分类和定义》官方英文原文翻译与解读(二)

3.7 DRIVING MODE  驱动方式


A type of vehicle operation with characteristic DDT requirements (e.g., expressway merging, high-speed cruising, low-speed traffic jam, etc.).

NOTE: In the previous version of this document, the term driving mode was used more extensively. In this updated version, operational design domain is the preferred term for many of these uses. 一种具有DDT特性要求的车辆运行方式(如高速公路并轨、高速巡航、低速堵车等)。

注意:在本文档的前一个版本中,术语驾驶模式被更广泛地使用。在这个更新的版本中,操作设计域是这些用途的首选术语。


3.8 DYNAMIC DRIVING TASK (DDT)  动态驾驶任务


All of the real-time operational and tactical functions required to operate a vehicle in on-road traffic, excluding the strategic functions such as trip scheduling and selection of destinations and waypoints, and including without limitation:

1. Lateral vehicle motion control via steering (operational);

2. Longitudinal vehicle motion control via acceleration and deceleration (operational);

3. Monitoring the driving environment via object and event detection, recognition, classification, and response preparation (operational and tactical)

4. Object and event response execution (operational and tactical);

5. Maneuver planning (tactical); and

6. Enhancing conspicuity via lighting, signaling and gesturing, etc. (tactical).

NOTE 1: For simplification and to provide a useful shorthand term, subtasks (3) and (4) are referred to collectively as object and event detection and response (OEDR) (see 3.15).

NOTE 2: In this document, reference is made to “complete(ing) the DDT.” This means fully performing all of the subtasks of the DDT, whether by the (human) driver, by the driving automation system, or by both.

NOTE 3: Figure 1 displays a schematic view of the driving task. For more information on the differences between operational, tactical, and strategic functions of driving, see 8.4. 在道路交通中操作车辆所需的所有实时操作和战术功能,不包括战略功能,如旅行计划和目的地和路径点的选择,包括但不限于:

1. 通过转向控制车辆横向运动(操作);

2. 通过加速和减速的纵向车辆运动控制(操作);

3.通过对象和事件检测、识别、分类和响应准备(操作和战术)监控驾驶环境

4. 对象和事件响应执行(操作和战术);

5. 策略规划(战术);和

6. 通过灯光、信号和手势等增强可视性(战术上)。

注1:为了简化和提供一个有用的速记术语,子任务(3)和(4)被统称为对象和事件检测和响应(OEDR)(见3.15)。

注2:在本文件中,参考“完成DDT”。“这意味着完全执行DDT的所有子任务,无论是由(人类)驾驶员、驾驶自动化系统,还是由两者共同完成。

注3:图1显示的是驱动任务示意图。关于驾驶的操作、战术和战略功能的差异的更多信息,见8.4。


Figure 1 - Schematic view of driving task showing DDT portion

For purposes of DDT performance, level 1 encompasses automation of part of the innermost loop (i.e., either lateral vehicle motion control functionality or longitudinal vehicle motion control functionality and limited OEDR associated with the given axis of vehicle motion control); level 2 encompasses automation of the innermost loop (lateral and longitudinal vehicle motion control and limited OEDR associated with vehicle motion control), and levels 3-5 encompass automation of both inner loops (lateral and longitudinal vehicle motion control and complete OEDR). Note that DDT performance does not include strategic aspects of driving (e.g., determining whether, when and where to travel).

图1 -显示DDT部分的驾驶任务示意图

为了达到DDT性能的目的,1级包含了部分最内层回路的自动化(即,横向车辆运动控制功能或纵向车辆运动控制功能,以及与给定的车辆运动控制轴相关的有限OEDR);2级包含最内层的自动化回路(横向和纵向车辆运动控制和与车辆运动控制相关的有限OEDR), 3-5级包含两个内层回路的自动化回路(横向和纵向车辆运动控制和完整OEDR)。注意DDT的性能不包括驾驶的战略方面(例如,决定是否、何时和到哪里旅行)。



3.9 DYNAMIC DRIVING TASK (DDT)] FALLBACK   动态驾驶任务


The response by the user or by an ADS to either perform the DDT or achieve a minimal risk condition after occurrence of a DDT performance-relevant system failure(s) or upon ODD exit.

NOTE 1: The DDT and the DDT fallback are distinct functions, and the capability to perform one does not necessarily entail the ability to perform the other. Thus, a level 3 ADS, which is capable of performing the entire DDT within its operational design domain (ODD), may not be capable of performing the DDT fallback in all situations that require it and thus will issue a request to intervene to the DDT fallback-ready user when necessary.

NOTE 2: At level 3, an ADS is capable of continuing to perform the DDT for at least several seconds after providing the fallback-ready user with a request to intervene. The DDT fallback-ready user is then expected to achieve a minimal risk condition if s/he determines it to be necessary.

NOTE 3: At levels 4 and 5, the ADS must be capable of performing the DDT fallback, as well as achieving a minimal risk condition. Level 4 and 5 ADS-equipped vehicles that are designed to also accommodate operation by a driver (whether conventional or remote) may allow a user to perform the DDT fallback if s/he chooses to do so. However, a level 4 or 5 ADS need not be designed to allow a user to perform DDT fallback and, indeed, may be designed to disallow it in order to reduce crash risk (see 8.3).

NOTE 4: While a level 4 or 5 ADS is performing the DDT fallback, it may be limited by design in speed and/or range of lateral and/or longitudinal vehicle motion control (i.e., it may enter so-called “limp-home mode”). 用户或广告的响应,要么执行DDT,要么在DDT性能相关的系统故障发生后或在临时退出时实现最小风险。

注1:DDT和DDT回退是不同的功能,执行其中一项的能力并不一定意味着执行另一项的能力。因此,能够在其操作设计域(ODD)内执行整个DDT的3级ADS,可能无法在所有需要它的情况下执行DDT回退,因此会在必要时向DDT回退准备好的用户发出干预请求。

注2:在第3级,ADS能够在向准备好的后备用户提供干预请求后继续执行DDT至少几秒钟。如果DDT后备用户认为有必要,则应将风险降至最低。

注3:在第4级和第5级时,广告必须有能力执行DDT补救,同时达到最低的风险条件。配备了4级和5级ads的车辆,在设计上也可适应司机的操作(无论是传统的还是远程的),如果用户选择这样做,则可以允许用户执行DDT回退。然而,4级或5级广告不需要设计成允许用户执行DDT回退,实际上,可能设计成不允许这样做,以降低撞车风险(见8.3)。

注4:当4级或5级ADS执行DDT撤退时,它可能会受到速度和/或横向和/或纵向车辆运动控制范围的设计限制(也就是说,它可能会进入所谓的“跛行home模式”)。

EXAMPLE 1: A level 1 adaptive cruise control (ACC) feature experiences a system failure that causes the feature to stop performing its intended function. The human driver performs the DDT fallback by resuming performance of the complete DDT.

EXAMPLE 2: A level 3 ADS feature that performs the entire DDT during traffic jams on freeways is not able to do so when it encounters a crash scene and therefore issues a request to intervene to the DDT fallback-ready user. S/he responds by taking over performance of the entire DDT in order to maneuver around the crash scene. (Note that in this example, a minimal risk condition is not needed or achieved.)

EXAMPLE 3: A level 4 ADS-dedicated vehicle (ADS-DV) that performs the entire DDT within a geo-fenced city center experiences a DDT performance-relevant system failure. In response, the ADS-DV performs the DDT fallback by turning on the hazard flashers, maneuvering the vehicle to the road shoulder and parking it, before automatically summoning emergency assistance. (Note that in this example, the ADS-DV automatically achieves a minimal risk condition.) 例1:一个1级自适应巡航控制(ACC)特征经历了系统故障,导致特征停止执行其预期的功能。驾驶员通过恢复完全的DDT执行DDT回退。

例子2:在高速公路上的交通堵塞期间执行整个DDT的3级ADS功能在遇到撞车场景时就不能这么做了,因此它会向DDT备用用户发出干预请求。她/他的反应是接管整个DDT的性能,以操纵坠机现场。(注意,在本例中,不需要或不实现最小风险条件。)

例子3:一辆4级ads专用车辆(ADS-DV)在一个有地理围栏的城市中心执行整个DDT任务时,遭遇了与DDT性能相关的系统故障。作为回应,ADS-DV通过打开危险闪光器,操纵车辆到路肩并停车,然后自动召唤紧急援助,执行DDT撤退。(注意,在这个例子中,ADS-DV自动实现了最小风险条件。)

The following Figures 2 through 6 illustrate DDT fallback at various levels of driving automation.

Figure 2 - Use case sequence at Level 3 showing ADS engaged, a vehicle failure and the user resuming control

Figure 3 - Use case sequence at Level 3 showing ADS engaged, and ADS failure and the user resuming control

Figure 4 - Use case sequence at Level 3 showing ADS engaged, exiting the ODD and the user resuming control


下面的图2到图6说明了在驾驶自动化的不同级别上DDT的回退。

图2 -第3级的用例序列显示广告已被激活、车辆故障和用户恢复控制

图3 -第3级的用例序列显示广告参与,广告失败和用户恢复控制

图4 -第3级的用例序列显示广告已被占用、退出奇数和用户恢复控制

Figure 5 - Use case sequence at Level 4 showing ADS engaged, an ADS failure and the system achieving a minimal risk condition

Figure 6 - Use case sequence at Level 4 showing ADS engaged, approaching ODD exit and the system achieving a minimal risk condition


图5 -第4级的用例序列显示ADS参与,一个ADS失败和系统实现最小风险条件

图6 -第4级的用例序列显示ADS参与,接近奇数出口,系统达到最小风险条件



3.10 LATERAL VEHICLE MOTION CONTROL  车辆横向运动控制


The DDT subtask comprising the activities necessary for the real-time, sustained regulation of the y-axis component of vehicle motion.

NOTE: Lateral vehicle motion control includes the detection of the vehicle positioning relative to lane boundaries and application of steering and/or differential braking inputs to maintain appropriate lateral positioning. DDT子任务包括实时、持续调节车辆运动的y轴分量所必需的活动。

注意:横向车辆运动控制包括检测车辆相对于车道边界的定位,以及应用转向和/或差动制动输入来保持适当的横向定位。



3.11 LONGITUDINAL VEHICLE MOTION CONTROL


The DDT subtask comprising the activities necessary for the real-time, sustained regulation of the x-axis component of vehicle motion.

NOTE: Longitudinal vehicle motion control includes maintaining set speed as well as detecting a preceding vehicle in the path of the subject vehicle, maintaining an appropriate gap to the preceding vehicle and applying propulsion or braking inputs to cause the vehicle to maintain that speed or gap. DDT子任务包括实时、持续调节车辆运动x轴分量所必需的活动。

注意:车辆纵向运动控制包括保持设定的速度,以及在目标车辆的路径上检测前车,与前车保持适当的间隙,并应用推进或制动输入来使车辆保持该速度或间隙。

Figure 7 - Diagram showing vehicle axes of motion (SAE J670:JAN2008)


图7 -显示车辆运动轴的图表(SAE J670: 2008年1月)


3.12 MINIMAL RISK CONDITION  最小的风险状况


A condition to which a user or an ADS may bring a vehicle after performing the DDT fallback in order to reduce the risk of a crash when a given trip cannot or should not be completed.

NOTE 1: At levels 1 and 2, the driver may or may not achieve a minimal risk condition in response to a vehicle fault condition or driving automation system failure.

NOTE 2: At level 3, given a DDT performance-relevant system failure in the ADS or vehicle, the DDT fallback-ready user is expected to achieve a minimal risk condition when s/he determines that it is necessary.

NOTE 3: At levels 4 and 5, the ADS is capable of automatically achieving a minimal risk condition when necessary (i.e., due to ODD exit, if applicable, or a DDT performance-relevant system failure in the ADS or vehicle). The characteristics of automated achievement of a minimal risk condition at levels 4 and 5 will vary according to the type and extent of the system failure, the ODD (if any) for the ADS feature in question, and the particular operating conditions when the system failure or ODD exit occurs. It may entail automatically bringing the vehicle to a stop within its current travel path, or it may entail a more extensive maneuver designed to remove the vehicle from an active lane of traffic and/or to automatically return the vehicle to a dispatching facility. 用户或广告可以在执DDT补救措施后,将车辆带来,以减少在某一特定旅程不能或不应该完成时发生撞车的风险。

注1:在1级和2级,驾驶员在响应车辆故障或驾驶自动化系统故障时可能达到或不达到最小风险条件。

注2:在第3级,如果在广告或车辆中出现与DDT性能相关的系统故障,则DDT后备用户在认为有必要时,应将风险降到最低。

注3:在级别4和5时,ADS能够在必要时自动达到最低风险条件(例如,由于奇数出口,如果适用,或在ADS或车辆中的DDT性能相关的系统故障)。自动化实现最小风险的特征条件在4和5的水平会有所不同根据系统故障的类型和程度上,广告功能的奇怪的(如果有的话),和特定的操作条件当系统发生故障或奇怪的退出。它可能包括自动将车辆停在其当前行驶路径内,或者可能需要更广泛的机动,旨在将车辆从活跃的交通车道上移开和/或自动将车辆送回调度设施。

EXAMPLE 1: A level 2 driving automation system feature that allows a user to stand outside of the vehicle and initiate an automated parking maneuver via wireless device automatically brings the vehicle to a stop within its current travel path when it experiences a DDT performance-relevant system failure.

EXAMPLE 2: A level 4 ADS feature designed to operate a vehicle at high speeds on freeways experiences a DDT performance-relevant system failure and automatically removes the vehicle from the active lane of traffic before coming to a stop.

EXAMPLE 3: A level 4 ADS feature designed to operate a vehicle at high speeds on freeways receives a request by a passenger to stop and automatically removes the vehicle from the active lane of traffic before coming to a stop.

EXAMPLE 4: A vehicle in which a level 4 ADS is installed experiences a DDT performance-relevant system failure in its primary electrical power system. The ADS utilizes a backup power source in order to achieve a minimal risk condition. 例子1:一个2级驾驶自动化系统的特性,当遇到与DDT性能相关的系统故障时,用户可以站在车辆外,通过无线设备启动自动停车操作,自动将车辆停在当前行驶路径内。

例子2:设计为在高速公路上高速行驶的车辆的4级ADS功能遭遇了与DDT性能相关的系统故障,并在停车前自动将车辆移出活跃车道。

例子3:一个4级ADS功能设计用于在高速公路上行驶的车辆,它接收到一名乘客的停车请求,并在停车前自动将车辆从活跃车道上移开。

例子4:安装了4级ADS的汽车在主要电力系统中遭遇了与DDT性能相关的系统故障。ADS采用备用电源,以达到最小的风险条件。


3.13 (DDT PERFORMANCE-RELEVANT) SYSTEM FAILURE  (与DDT性能相关的)系统故障


A malfunction in a driving automation system and/or other vehicle system that prevents the driving automation system from reliably sustaining DDT performance (partial or complete).

NOTE 1: This definition applies to vehicle fault conditions and driving automation system failures that prevent a driving automation system from performing at full capability according to design intention.

NOTE 2: This term does not apply to transient lapses in performance by a level 1 or 2 driving automation system that are due to inherent design limitations and that do not otherwise prevent the system from performing its part of the DDT on a sustained basis. 自动驾驶系统和/或其他车辆系统中的故障,妨碍自动驾驶系统可靠地维持(部分或全部)DDT性能。

注1:此定义适用于车辆故障情况和驾驶自动化系统故障,这些故障导致驾驶自动化系统无法按照设计意图充分发挥作用。

注2:本术语不适用于1级或2级自动驾驶系统由于固有的设计限制而导致的性能暂失,否则无法阻止系统持续执行其部分的DDT。

EXAMPLE 1: A level 1 driving automation system that performs the lateral vehicle motion control subtask of the DDT experiences a DDT performance-relevant system failure in one of its cameras, which prevents it from reliably detecting lane markings. The feature causes a malfunction indication message to be displayed in the center console at the same time that the feature automatically dis-engages, requiring the driver to immediately resume performing the lateral vehicle motion control subtask of the DDT.

EXAMPLE 2: A level 3 ADS experiences a DDT performance-relevant system failure in one of its radar sensors, which prevents it from reliably detecting objects in the vehicle’s pathway. The ADS responds by issuing a request to intervene to the DDT fallback-ready user. The ADS continues to perform the DDT, while reducing vehicle speed, for several seconds to allow time for the DDT fallback-ready user to resume operation of the vehicle in an orderly manner.

EXAMPLE 3: A vehicle with an engaged level 3 ADS experiences a broken tie rod, which causes the vehicle to handle very poorly giving the fallback-ready user ample kinesthetic feedback indicating a vehicle malfunction necessitating intervention. The fallback-ready user responds by resuming the DDT, turning on the hazard lamps, and pulling the vehicle onto the closest road shoulder, thereby achieving a minimal risk condition.

EXAMPLE 4: A level 4 ADS experiences a DDT performance-relevant system failure in one of its computing modules. The ADS transitions to DDT fallback by engaging a redundant computing module(s) to achieve a minimal risk condition. 例子1:一个一级自动驾驶系统在执行DDT的横向车辆运动控制子任务时,其中一个摄像头出现了与DDT性能相关的系统故障,这使得它无法可靠地检测车道标记。该功能会导致故障指示信息显示在中控台上,同时该功能会自动断开,要求司机立即恢复执行DDT的横向车辆运动控制子任务。

例子2:一个3级ADS的雷达传感器出现了与DDT性能相关的系统故障,这使得它无法可靠地探测到车辆路径上的物体。广告的回应是向DDT后备用户发出干预请求。ADS继续执行DDT,同时降低车速,为DDT后备用户留出时间,以有序地恢复车辆的操作。

例子3:一辆拥有3级ADS的汽车经历了一个断裂的拉杆,这将导致车辆处理得非常糟糕,给准备就绪的用户充足的动觉反馈,表明车辆故障需要进行干预。应急用户的反应是继续使用DDT,打开危险灯,并将车辆拖到最近的路肩,从而实现最小的风险条件。

例子4:一个等级4的ADS在它的一个计算模块中遭遇了与DDT性能相关的系统故障。ADS通过引入冗余计算模块来实现向DDT回退的过渡,以实现最小的风险条件。


 

3.14 MONITOR  监控


A general term referencing a range of functions involving real-time human or machine sensing and processing of data used to operate a vehicle, or to support its operation.

NOTE 1: The terms below describing types of monitoring should be used when the general term “monitor” and its derivatives are insufficiently precise.

NOTE 2: The following four terms (1 – monitor the driver, 2 – monitor the driving environment, 3 – monitor vehicle performance, and 4 – monitor driving automation system performance) describe categories of monitoring (see Scope regarding primary actors).

NOTE 3: The driver state or condition of being receptive to alerts or other indicators of a DDT performance-relevant system failure, as assumed in level 3, is not a form of monitoring. The difference between receptivity and monitoring is best illustrated by example: A person who becomes aware of a fire alarm or a telephone ringing may not necessarily have been monitoring the fire alarm or the telephone. Likewise, a user who becomes aware of a trailer hitch falling off may not necessarily have been monitoring the trailer hitch. By contrast, a driver in a vehicle with an active level 1 ACC system is expected to monitor the driving environment and the ACC performance and otherwise not to wait for an alert to draw his/her attention to a situation requiring a response. See 3.18 below. 一种通用术语,指一系列功能,包括用于操纵车辆或支持其操作的人或机器的实时传感和数据处理。

注1:当“监测”及其衍生物的总称不够精确时,应使用以下描述监测类型的术语。

注2:以下四个术语(1 -监控驾驶员,2 -监控驾驶环境,3 -监控车辆性能,4 -监控驾驶自动化系统性能)描述了监控的类别(见主要参与者范围)。

注3:驾驶员状态或状态接受警报或与DDT性能相关的系统故障的其他指标,如3级所假定的,不是一种监测形式。接收能力和监测能力之间的区别可以用一个例子来最好地说明:一个人意识到火灾警报或电话铃声可能并不一定是在监测火灾警报或电话。同样地,如果用户发现一个挂车挂掉了,他也不一定一直在监控挂车挂。相比之下,配备1级主动ACC系统的车辆的驾驶员则需要监控驾驶环境和ACC性能,否则就无需等待警报来吸引他/她对需要响应的情况的注意。请参阅下面的3.18。

3.14.1 MONITOR THE USER

The activities and/or automated routines designed to assess whether and to what degree the user is performing the role specified for him/her.

NOTE 1: User monitoring in the context of driving automation is most likely to be deployed as a countermeasure for misuse or abuse (including over-reliance due to complacency) of a driving automation system, but may also be used for other purposes.

NOTE 2: User monitoring is primarily useful for levels 2 and 3, as below these levels evidence from the field has not identified significant incidence of misuse or abuse of driving automation technology, and above these levels the ADS is always capable of achieving a minimal risk condition automatically, so user misuse/abuse is not relevant.

3.14.1监控用户

设计用来评估用户是否以及在多大程度上执行了为其指定的角色的活动和/或自动化例程。

注1:自动驾驶环境下的用户监控很可能被用于防止驾驶自动化系统的误用或滥用(包括因自满而过度依赖),但也可能用于其他目的。

注2:用户监控主要是用于水平2和3,如下这些领域没有确定的证据水平的发病率显著误用或滥用的驾驶自动化技术,以上这些水平的广告总是能够自动实现最小的风险状况,所以用户误用或滥用是不相关的。

3.14.2 MONITOR THE DRIVING ENVIRONMENT

The activities and/or automated routines that accomplish real-time roadway environmental object and event detection, recognition, classification, and response preparation (excluding actual response), as needed to operate a vehicle.

NOTE: When operating conventional vehicles that are not equipped with an engaged ADS, drivers visually sample the road scene sufficiently to competently perform the DDT while also performing secondary tasks that require short periods of eyes-off-road time (e.g., adjusting cabin comfort settings, scanning road signs, tuning a radio, etc.). Thus, monitoring the driving environment does not necessarily entail continuous eyes-on-road time by the driver.

3.14.2监控驾驶环境

活动和/或自动化例程,完成实时道路环境对象和事件检测、识别、分类和响应准备(不包括实际响应),根据需要操作车辆。

注意:在驾驶没有安装广告的常规车辆时,驾驶员可以在视觉上对道路场景进行充分的采样,以胜任执行DDT的工作,同时还可以执行需要短时间眼观窗外的次要任务(例如,调整机舱舒适度设置、扫描路牌、调整收音机等)。因此,监控驾驶环境并不一定需要驾驶员持续盯着道路的时间。

3.14.3 MONITOR VEHICLE PERFORMANCE (FOR DDT PERFORMANCE-RELEVANT SYSTEM FAILURES)

The activities and/or automated routines that accomplish real-time evaluation of the vehicle performance, and response preparation, as needed to operate a vehicle.

NOTE: While performing the DDT, level 4 and 5 ADSs monitor vehicle performance. However, for level 3 ADSs, as well as for level 1 and 2 driving automation systems, the human driver is assumed to be receptive to vehicle conditions that adversely affect performance of the DDT (see definition of receptivity at 3.18).

EXAMPLE 1: While a level 2 driving automation system is engaged in stop-and-go traffic, a malfunctioning brake caliper causes the vehicle to pull slightly to the left when the brakes are applied. The human driver observes that the vehicle is deviating from its lane and either corrects the vehicle’s lateral position or disengages the driving automation system entirely.

EXAMPLE 2: While a level 4 ADS is engaged in stop-and-go traffic, a malfunctioning brake caliper causes the vehicle to pull to the left when the brakes are applied. The ADS recognizes this deviation, corrects the vehicle’s lateral position and transitions to a limp-home mode until the vehicle achieves a minimal risk condition.

3.14.3监控车辆性能(针对与DDT性能相关的系统故障)

完成车辆性能实时评估和响应准备的活动和/或自动化程序,如操作车辆所需。

注:在执行DDT时,4级和5级ADSs监控车辆的性能。然而,对于3级ADSs,以及1级和2级驾驶自动化系统,人类驾驶员被认为能够接受对DDT性能产生不利影响的车辆条件(见3.18的接受度定义)。

例1:当一个2级自动驾驶系统处于走走停停的交通状态时,一个失灵的制动卡钳导致车辆在刹车时轻微地向左拉。驾驶员观察到车辆偏离车道时,要么纠正车辆的横向位置,要么完全脱离驾驶自动化系统。

例子2:当四级ADS处于走走停停的交通状态时,一个失灵的制动卡钳导致车辆在刹车时向左拉。ADS能够识别这种偏差,纠正车辆的横向位置,并切换到跛置模式,直到车辆达到最小风险状态。

3.14.4 MONITOR DRIVING AUTOMATION SYSTEM PERFORMANCE

The activities and/or automated routines for evaluating whether the driving automation system is performing part or all of the DDT appropriately.

NOTE 1: The term monitor driving automation system performance should not be used in lieu of supervise, which includes both monitoring and responding as needed to perform the DDT and is therefore more comprehensive.

NOTE 2: Recognizing requests to intervene issued by a driving automation system is not a form of monitoring driving automation system performance, but rather a form of receptivity.

NOTE 3: At levels 1-2, the driver monitors the driving automation system’s performance .

NOTE 4: At higher levels of driving automation (levels 3-5), the ADS monitors its own performance of the complete DDT.

EXAMPLE 1: A conventional driver verifies that an engaged ACC system is maintaining an appropriate gap while following a preceding vehicle in a curve.

EXAMPLE 2: A remote driver engaging a level 2 automated parking feature monitors the pathway of the vehicle to ensure that it is free of pedestrians and obstacles.

3.14.4监控驾驶自动化系统性能

用于评估驾驶自动化系统是否正确执行部分或全部DDT的活动和/或自动化程序。

注1:术语“监控驾驶自动化系统性能”不能代替“监督”,“监督”包括在执行DDT时的监控和响应,因此更全面。

注2:识别驾驶自动化系统发出的干预请求不是一种监控驾驶自动化系统性能的形式,而是一种接受的形式。

注3:在1-2级,驾驶员监控驾驶自动化系统的性能。

注4:在更高级别的驾驶自动化水平(3-5级),ADS监控自己的完整DDT性能。

例1:一名传统驾驶员验证在弯道上跟随前一辆车时,ACC系统是否保持了适当的间隙。

例2:远程驾驶员使用2级自动停车功能监控车辆的路径,以确保车辆没有行人和障碍物。




3.15 OBJECT AND EVENT DETECTION AND RESPONSE (OEDR)   对象和事件检测与响应(OEDR)


The subtasks of the DDT that include monitoring the driving environment (detecting, recognizing, and classifying objects and events and preparing to respond as needed) and executing an appropriate response to such objects and events (i.e., as needed to complete the DDT and/or DDT fallback). DDT的子任务包括监测驾驶环境(检测、识别和分类对象和事件,并准备响应)和对这些对象和事件执行适当的响应(如,需要完成DDT和/或DDT回滚)。



3.16 OPERATE [A MOTOR VEHICLE]  操作[机动车辆]


Collectively, the activities performed by a (human) driver (with or without support from one or more level 1 or 2 driving automation features) or by an ADS (level 3-5) to perform the entire DDT for a given vehicle during a trip.

NOTE 1: The term “drive” is not used in this document, however, in many cases it could be used correctly in lieu of “operate.”

NOTE 2: Although use of the term operate/operating implies the existence of an “operator,” this term is not defined or used in this document, which otherwise provides very specific terms and definitions for the various types of ADS-equipped vehicle users (see 3.24). 总的来说,是指(人类)司机(有或没有一个或多个1级或2级自动驾驶功能的支持)或ADS(3-5级)在一辆给定车辆的旅程中执行整个DDT的活动。

注1:术语“驱动器”在本文档中没有使用,但是,在很多情况下,它可以正确地代替“操作”。

注2:虽然“操作/操作”一词的使用意味着“操作员”的存在,但本文件并未对该词作出定义或使用,本文件为各种配备ads的车辆用户提供了非常具体的术语和定义(见3.24)。


3.17 OPERATIONAL DESIGN DOMAIN (ODD)  操作设计域(奇数)


The specific conditions under which a given driving automation system or feature thereof is designed to function, including, but not limited to, driving modes.

NOTE 1: An ODD may include geographic, roadway, environmental, traffic, speed, and/or temporal limitations. A given ADS may be designed to operate, for example, only within a geographically-defined military base, only under 25 mph, and/or only in daylight.

NOTE 2: An ODD may include one or more driving modes. For example, a given ADS may be designed to operate a vehicle only on fully access-controlled freeways and in low-speed traffic, high-speed traffic, or in both of these driving modes.

NOTE 3: In the previous version of this document, the term driving mode was used more extensively. In this updated version, ODD is the preferred term for many of these uses.

NOTE 4: Section 6 discusses the significance of ODDs in the context of the levels of driving automation. 给定的驾驶自动化系统或其特征被设计用于工作的特定条件,包括但不限于驾驶模式。

注1:奇数可能包括地理、道路、环境、交通、速度和/或时间限制。例如,一个给定的广告可能被设计成只在地理上定义的军事基地内运行,时速低于25英里,和/或只在白天运行。

注2:奇数可能包括一种或多种驾驶模式。例如,一个给定的ADS可能被设计成只在完全入口控制的高速公路、低速交通、高速交通或这两种驾驶模式下运行车辆。

注3:在本文档的前一版本中,术语驾驶模式被广泛使用。在这个更新的版本中,奇数是这些用法的首选术语。

注4:第6节讨论了在驾驶自动化水平的背景下,概率的重要性。


相关实践学习
基于小程序Serverless开发个人相册小程序
本场景基于小程序云Serverless+小程序开发者工具(IDE),快速搭建个人相册小程序
SAE的功能与使用入门
欢迎来到《SAE的功能与使用入门》,本课程是“云原生Serverless Clouder认证“系列中的第三阶段。课程将向您介绍阿里云Serverless应用引擎(SAE)服务相关的概念、特性与使用方式。通过课程将带您逐步深入探索Serverless世界,借助SAE服务,即使没有丰富的云计算和IT经验,也能够让开发人员在实际业务场景中便捷的掌握如何构建和部署应用程序,快速拥抱Serverless架构,将精力聚焦在应用代码和业务逻辑的实现上。 学习完本课程后,您将能够: 掌握Serverless应用引擎(SAE)的基本概念与核心优势 了解Serverless应用引擎(SAE)的核心功能 掌握使用Serverless应用引擎(SAE)的开发和部署流程 了解Serverless应用引擎(SAE)的适用场景和最佳实践  
相关文章
|
6天前
|
运维 Kubernetes 监控
构建高效自动化运维系统:基于容器技术的策略与实践
【4月更文挑战第19天】随着云计算和微服务架构的兴起,传统的运维模式正逐渐向自动化、智能化转型。本文将探讨如何利用容器技术构建一个高效、可靠的自动化运维系统,涵盖系统设计原则、关键技术选型以及实践经验分享。通过引入容器技术,我们可以实现应用的快速部署、弹性伸缩和故障自愈,从而提高运维效率,降低系统维护成本。
|
6天前
|
数据采集 机器学习/深度学习 算法框架/工具
利用Python实现基于图像识别的自动化数据采集系统
本文介绍了如何利用Python编程语言结合图像识别技术,构建一个自动化的数据采集系统。通过分析图像内容,实现对特定信息的提取和识别,并将其转化为结构化数据,从而实现高效、准确地采集需要的信息。本文将详细讨论系统的设计思路、技术实现以及应用场景。
|
6天前
|
运维 Prometheus 监控
构建高效自动化运维系统的关键策略
【2月更文挑战第30天】随着云计算和微服务架构的兴起,现代IT运维环境变得愈加复杂多变。为保持业务连续性、提高响应速度并降低成本,企业亟需构建一个高效的自动化运维系统。本文将深入探讨自动化运维系统构建过程中的关键策略,包括工具和技术选型、流程优化、监控与告警体系搭建以及持续集成/持续部署(CI/CD)实践,旨在为读者提供一个清晰的构建蓝图和实用的实施建议。
|
6天前
|
运维 监控 安全
构建高效自动化运维系统:策略与实践
【4月更文挑战第29天】 在信息技术日新月异的今天,高效的运维管理已成为企业保持竞争力的关键因素。本文将探讨如何构建一个能够适应快速变化需求的自动化运维系统。通过深入分析自动化工具的选择、配置管理的最佳实践以及持续集成和部署的策略,我们旨在为读者提供一个清晰的框架来优化他们的运维流程。文章的核心在于提出一种结合了最新技术和思维模式的综合解决方案,以实现运维工作的最优化。
|
6天前
|
人工智能 运维 监控
构建高性能微服务架构:现代后端开发的挑战与策略构建高效自动化运维系统的关键策略
【2月更文挑战第30天】 随着企业应用的复杂性增加,传统的单体应用架构已经难以满足快速迭代和高可用性的需求。微服务架构作为解决方案,以其服务的细粒度、独立性和弹性而受到青睐。本文将深入探讨如何构建一个高性能的微服务系统,包括关键的设计原则、常用的技术栈选择以及性能优化的最佳实践。我们将分析微服务在处理分布式事务、数据一致性以及服务发现等方面的挑战,并提出相应的解决策略。通过实例分析和案例研究,我们的目标是为后端开发人员提供一套实用的指南,帮助他们构建出既能快速响应市场变化,又能保持高效率和稳定性的微服务系统。 【2月更文挑战第30天】随着信息技术的飞速发展,企业对于信息系统的稳定性和效率要求
|
1天前
|
运维 监控 持续交付
构建高效自动化运维系统:策略与实践
【5月更文挑战第20天】 随着信息技术的飞速发展,传统的IT运维模式已难以满足快速变化的业务需求。本文聚焦于如何构建一个高效的自动化运维系统,旨在探讨自动化运维的最佳实践、工具选择和实施策略。文中不仅阐述了自动化运维的必要性和优势,还提供了详细的架构设计和关键技术点分析,以期帮助企业实现运维效率的最大化。
|
2天前
|
机器学习/深度学习 人工智能 运维
构建高效自动化运维系统:DevOps与AI的融合
【5月更文挑战第19天】 在数字化转型的浪潮中,企业IT运维面临着日益复杂的挑战。传统的手动运维方式已经无法满足快速迭代和高可靠性的需求。本文探讨了如何通过结合DevOps理念和人工智能(AI)技术,构建一个高效的自动化运维系统。文章首先回顾了DevOps的核心原则及其在自动化运维中的应用,接着分析了AI如何增强故障预测、智能决策和自动化流程的能力。最后,提出了一个综合DevOps与AI技术的自动化运维框架,并讨论了其在实际部署中的优势和潜在挑战。
|
3天前
|
机器学习/深度学习 人工智能 运维
构建高效自动化运维系统的五大关键步骤
【5月更文挑战第18天】在数字化转型的浪潮中,高效的自动化运维系统成为企业保障IT服务管理效率和稳定性的核心。本文将探讨构建自动化运维系统的五个关键步骤,包括需求分析、设计蓝图、选择合适的工具、实施与集成以及持续优化。通过这些步骤的实施,企业能够实现故障快速响应、资源优化配置和成本有效控制,从而提升整体的IT服务质量和用户满意度。
|
6天前
|
运维 监控 安全
构建高效自动化运维系统:基于容器技术的持续集成与持续部署(CI/CD)实践
【5月更文挑战第14天】 随着DevOps文化的深入人心,持续集成与持续部署(CI/CD)已成为现代软件工程不可或缺的组成部分。本文将探讨如何利用容器技术,尤其是Docker和Kubernetes,构建一个高效、可扩展的自动化运维系统。通过深入分析CI/CD流程的关键组件,我们将讨论如何整合这些组件以实现代码从提交到生产环境的快速、无缝过渡。文章还将涉及监控、日志管理以及安全性策略等运维考量,为读者提供一个全面的自动化运维解决方案蓝图。
|
6天前
|
传感器 存储 数据采集
LabVIEW通过视频识别开发布氏硬度机自动化测量系统
LabVIEW通过视频识别开发布氏硬度机自动化测量系统
10 4

热门文章

最新文章