Python:pmml格式文件的简介、安装、使用方法(利用python将机器学习模型转为Java常用的pmml格式文件)之详细攻略

简介: Python:pmml格式文件的简介、安装、使用方法(利用python将机器学习模型转为Java常用的pmml格式文件)之详细攻略

pmml格式文件的简介


      PMML(Predictive Model Markup Language)主要是作为分析模型训练实例的载体,截至到PMML 4.2版本,支持的模型包括:关联规则、基线模型、决策树、聚类、回归、KNN、神经网络、贝叶斯、记分牌、序列、文本、时间序列、规则集和SVM。  PMML使用统一的规范进行验证,使用XSD进行词法验证,使用XSLT进行语法验证,在构造和解析的时候都要依照统一的PMML规范操作。

      PMML 是一种事实标准语言,用于呈现数据挖掘模型。预测分析模型 和数据挖掘模型 是指代数学模型的术语,这些模型采用统计技术了解大量历史数据中隐藏的模式。预测分析模型采用定型过程中获取的知识来预测新数据中是否有已知模式。PMML 允许您在不同的应用程序之间轻松共享预测分析模型。因此,您可以在一个系统中定型一个模型,在 PMML 中对其进行表达,然后将其移动到另一个系统中,并在该系统中使用上述模型预测机器失效的可能性等。

      简单来说,PMML就是在一个平台训练好模型,然后封装成PMML文件,然后再在另一个平台中可以直接使用训练好的模型。PMML 是数据挖掘群组的产物,该群组是一个由供应商领导的委员会,由各种商业和开放源码分析公司组成。因此,现在的大部分领先数据挖掘工具都可以导出或导入 PMML。作为一个已发展 10 多年的成熟标准,PMML 既可以呈现用于从数据中了解模型的统计技术(如人工神经网络和决策树),也可以呈现原始输入数据的预处理以及模型输出的后处理。



1、PMML结构  


a) PMML标签  PMML的命名空间定义如下:  xmlns="http://www.dmg.org/PMML-4_2"  

b) Header标签  Header标签标识着PMML正文的开始,可以包含copyright、描述、名称等信息,可以添加时间戳、注解等元素。

c) MiningBuildTask  此元素包含构造模型实例的配置信息,一般是SQL或Java片段。  

d) DataDictionary  此元素包含挖掘模型的每个属性信息,通过DataDictionary基本可以确定模型的规模。在DataDictionary中的DataField的name必须在DataField和DerivedField的name中唯一。  

e) TransformationDictionary  TransformationDictionary主要用于从原数据到模型使用数据之间的映射,支持的映射包括正规化、离散化、数值映射、词频、定义函数和聚集。



pmml安装


Python之pypmml:pypmml的简介、安装、使用方法之详细攻略






pmml格式文件的使用方法


1、将训练好的模型转化为PMML文件


利用XGBoost模型对Iris数据训练并转为PMML文件,载入并实现预测


相关文章
|
1天前
|
机器学习/深度学习 数据挖掘 定位技术
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
85 6
|
1月前
|
机器学习/深度学习 安全 PyTorch
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
97 20
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署 DeepSeek-V3 模型,阿里云 PAI-Model Gallery 最佳实践
本文介绍了如何在阿里云 PAI 平台上一键部署 DeepSeek-V3 模型,通过这一过程,用户能够轻松地利用 DeepSeek-V3 模型进行实时交互和 API 推理,从而加速 AI 应用的开发和部署。
|
1月前
|
自然语言处理 Java 关系型数据库
Java mysql根据很长的富文本如何自动获取简介
通过使用Jsoup解析富文本并提取纯文本,然后根据需要生成简介,可以有效地处理和展示长文本内容。该方法简单高效,适用于各种应用场景。希望本文对您在Java中处理富文本并生成简介的需求提供实用的指导和帮助。
57 14
|
1月前
|
机器学习/深度学习 存储 设计模式
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
本文探讨了数据基础设施设计中常见的一个问题:数据仓库或数据湖仓中的表格缺乏构建高性能机器学习模型所需的历史记录,导致模型性能受限。为解决这一问题,文章介绍了缓慢变化维度(SCD)技术,特别是Type II类型的应用。通过SCD,可以有效追踪维度表的历史变更,确保模型训练数据包含完整的时序信息,从而提升预测准确性。文章还从数据工程师、数据科学家和产品经理的不同视角提供了实施建议,强调历史数据追踪对提升模型性能和业务洞察的重要性,并建议采用渐进式策略逐步引入SCD设计模式。
103 8
特征时序化建模:基于特征缓慢变化维度历史追踪的机器学习模型性能优化方法
|
1月前
|
自然语言处理 Java 关系型数据库
Java mysql根据很长的富文本如何自动获取简介
通过使用Jsoup解析富文本并提取纯文本,然后根据需要生成简介,可以有效地处理和展示长文本内容。该方法简单高效,适用于各种应用场景。希望本文对您在Java中处理富文本并生成简介的需求提供实用的指导和帮助。
47 9
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
276 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。

推荐镜像

更多