Interview:算法岗位面试—上海某公司算法岗位(偏机器学习,互联网金融行业)技术面试考点之数据结构相关考察点—斐波那契数列、八皇后问题、两种LCS问题

简介: Interview:算法岗位面试—上海某公司算法岗位(偏机器学习,互联网金融行业)技术面试考点之数据结构相关考察点—斐波那契数列、八皇后问题、两种LCS问题

数据结构相关问题


1、生成斐波那契数列—yield的应用


考察点: yield


1、yield的特点:

(1)、带有 yield 的函数是生成器:带有 yield 的函数在 Python 中被称之为 generator生成器,当使用一个yield的时候,对应的函数就是一个生成器了。成器对象可以被for循环迭代,也可以手动执行next或者send方法精准控制这个生成器的内部执行,

(2)、yield是一个类似 return 的关键字:迭代一次遇到yield时,就返回yield后面(右边)的值。yield就是 return 返回一个值,并且记住这个返回的位置,下次迭代就从这个位置后(下一行)开始。


2、yield的两大函数:

next:next方法就相当于“下一步”生成哪个数,这一次的next开始的地方是接着上一次的next停止的地方执行的。next方法第一次调用a.next()无法输出参数,以后每次a.next(赋值)都等于函数体里面yield表达式的值。

send:send方法会首先把上一次挂起的yield语句的返回值通过参数设定,从而实现与生成器方法的交互。

注意:

(1)、当send方法的参数为None时,它与next方法完全等价。但是注意,虽然这样的代码可以接受,但是不规范。所以,在调用send方法之前,还是先调用一次next方法为好。

(2)、其实next和send在一定意义上作用是相似的,区别是send可以传递yield表达式的值进去,而next不能传递特定的值,只能传递None进去。因此,我们可以看做c.next 和 c.send(None) 作用是一样的。


3、yield的应用:需要节约内存不需要一把全部返回,每次使用的时候再去算,我们就会用到生成器。

      在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行。而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。


def fab(max):

   n, a, b = 0, 0, 1

   while n < max:

       yield b      # 使用 yield

       a, b = b, a + b

       n = n + 1

     

for n in fab(5):

   print(n)

2、八皇后问题


    八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。计算机发明后,有多种计算机语言可以解决此问题。

考察点:考察结构性编程的能力

理解:在8行8列的棋盘上摆放8个皇后,使之不能互相攻击——任意两个不在同一行、同一列或同一斜线上。典型的回溯算法。

首先,我们要想到某种方法来解决冲突检测问题,即不能令棋子处于能相互吃掉的位置——相邻、左右、对角线。

其次,运用回溯的方法,求得问题的解。此处具体为函数的递归调用,当调用到棋盘的最后一行,便跳出,求得解。|

最后,将解打印出来。难点在于对递归调用函数的理解。


1、python八行代码简单实现的八皇后问题


def queen(lists, current=0):    #current当前状态

   if current == len(lists):

       print(lists)

       return 0

   for col in range(len(lists)):     #外for循环

       lists[current], flag = col, True          #列表内赋值,初始化标记

       for row in range(current):            #内for循环取出每一行,if判断,同列或者对角线,标记为false,且跳出当前层的for循环

           if lists[row] == col or abs(col - lists[row]) == current - row:

               flag = False

               break

       if flag:                          #if判断,合法位置才进行递归调用

           queen(lists, current+1)

res=queen([None]*8)

2、利用yield函数实现的八皇后问题


Algorithm:【Algorithm算法进阶之路】之利用yield函数解决八皇后问题


3、两种LCS问题——最长公共子序列和最长公共字符串


Algorithm:C++/python语言实现之求旋转数组最小值、求零子数组、求最长公共子序列和最长公共子串、求LCS与字符串编辑距离


相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
40 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
21天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
1月前
|
算法 定位技术
数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题
本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。
41 0
|
1月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
8天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
16天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
17天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。

热门文章

最新文章

下一篇
无影云桌面