【机器学习】采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?(面试回答)

简介: EM算法(期望最大化算法)的应用场景和求解原理。

(1)概念

EM算法称为期望最大化算法,分为两步,求期望和求极大值。

(2)基本思想

首先根据己经给出的观测数据,估计出模型参数的值;然后再依据上一步估计出的参数值估计缺失数据的值,再根据估计出的缺失数据加上之前己经观测到的数据重新再对参数值进行估计,然后反复迭代,直至最后收敛,迭代结束。

EM的求解原理:在求解一个含有隐变量的概率模型时,目标是极大化观测数据关于参数的对数似然,而其中极大化的主要困难是还有未观测数据并有包含和的对数。EM算法就是通过迭代,不断求解下界极大化,而逐步求解对数似然函数极大化。

(3)应用

高斯混合模型(GMM)、k-means聚类、隐式马尔科夫算法(HMM)、LDA主题模型的变分推断

(4)不用牛顿法和梯度下降法的原因

由于求和的项数随着隐变量的数目指数上升,会给梯度计算带来麻烦.EM算法是一种非梯度化优化算法.

目录
相关文章
|
16天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
7天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
9天前
|
存储 自然语言处理 算法
【算法精讲系列】MGTE系列模型,RAG实施中的重要模型
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
|
10天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
10天前
|
自然语言处理 监控 算法
【算法精讲系列】通义模型Prompt调优的实用技巧与经验分享
本文详细阐述了Prompt的设计要素,包括引导语、上下文信息等,还介绍了多种Prompt编写策略,如复杂规则拆分、关键信息冗余、使用分隔符等,旨在提高模型输出的质量和准确性。通过不断尝试、调整和优化,可逐步实现更优的Prompt设计。
|
10天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
85 1
|
16天前
|
机器学习/深度学习 算法 数据挖掘
机器学习必知必会10大算法
机器学习必知必会10大算法
|
17天前
|
机器学习/深度学习 算法 数据挖掘
【白话机器学习】算法理论+实战之决策树
【白话机器学习】算法理论+实战之决策树
|
15天前
|
机器学习/深度学习 存储 算法
图解最常用的 10 个机器学习算法!
图解最常用的 10 个机器学习算法!
|
1月前
|
机器学习/深度学习 存储 人工智能
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题
本文是关于2022-2023年知能科技公司机器学习算法工程师岗位的秋招笔试题,包括简答题和编程题,简答题涉及神经网络防止过拟合的方法、ReLU激活函数的使用原因以及条件概率计算,编程题包括路径行走时间计算和两车相向而行相遇时间问题。
57 2
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题