【机器学习】过拟合和欠拟合怎么判断,如何解决?(面试回答)

简介: 本文介绍了如何通过观察训练误差和验证误差来判断模型是否出现过拟合或欠拟合,并提供了相应的解决方案,包括增加数据、调整模型复杂度、使用正则化技术等。

过拟合和欠拟合怎么判断,如何解决?

(1)判断:训练集误差和验证集误差,从而判断算法达到什么效果

  • 训练误差大和验证误差都大,是欠拟合
  • 训练误差和验证误差差不多,都较低,是适度拟合
  • 训练误差小,验证误差大,是过拟合

(2)过拟合的解决方法

  • 数据集角度

    • 增加样本量
    • 数据集扩增

    • 原有数据加随机噪声

    • 重采样

  • 特征角度

    • 特征选择

    • 特征降维

  • 模型角度

    • 降低模型复杂度

    • 正则化 ,正则化正是通过在损失函数上添加额外的参数稀疏性惩罚项(正则项),来限制网络的稀疏性,以此约束网络的实际容量,从而防止模型出现过拟合。L1正则化是将权值的绝对值之和加入损失函数,使得权值中0值比重增大,因此得到的权值较为稀疏。L2正则化是将权重的平方之和加入损失函数,使得权值分布更加平均,所以权值较为平滑。

    • Dropout舍弃,在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃,使得每次训练的网络结构多样。

  • 训练角度

    • 早停止,如在训练中多次迭代后发现模型性能没有显著提高就停止训练

    • 交叉验证

(3)欠拟合的解决方法

  1. 增加新特征,可以考虑加入进特征组合、高次特征,来增大假设空间,添加多项式特征
  2. 减少正则化参数,正则化的目的是用来防止过拟合的,但是模型出现了欠拟合,则需要减少正则化参数
  3. 使用非线性模型,比如核SVM 、决策树、深度学习等模型
  4. 使用集成学习方法,如Bagging ,将多个弱学习器Bagging
目录
相关文章
|
12月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的过拟合现象及其解决方案
在机器学习领域,过拟合是一个常见且棘手的问题,它发生在模型过于复杂以至于捕捉到训练数据中的噪声而非信号时。本文将深入探讨过拟合的原因、影响以及如何通过技术手段有效缓解这一问题,旨在为读者提供一个全面而实用的指南。
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
1570 3
|
机器学习/深度学习 算法 数据挖掘
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
机器学习入门(二):如何构建机器学习模型,机器学习的三要素,欠拟合,过拟合
|
机器学习/深度学习
深入理解机器学习中的过拟合与正则化
深入理解机器学习中的过拟合与正则化
|
机器学习/深度学习 算法 API
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
|
29天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
12月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1142 6
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。