DL之FasterR-CNN:Faster R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略(一)

简介: DL之FasterR-CNN:Faster R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

Faster R-CNN算法的简介(论文介绍)


     Faster R-CNN,顾名思义,相对R-CNN有非常大的提高!


Abstract

     State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations.  Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region  proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image  convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional  network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to  generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN  into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with  “attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3],  our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection  accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO  2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been  made publicly available.

摘要

     最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet[1]和Fast R-CNN[2]等技术的进步,降低了检测网络的运行时间,暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的对象边界和对象得分。对RPN进行端到端训练,生成高质量的区域建议,Fast R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Fast R-CNN合并成一个单独的网络——使用最近流行的具有“注意”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号[3],我们的检测系统在GPU上的帧率为5fps(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个提案。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。代码已经公开。

CONCLUSION  

     We have presented RPNs for efficient and accurate  region proposal generation. By sharing convolutional features with the down-stream detection network, the  region proposal step is nearly cost-free. Our method  enables a unified, deep-learning-based object detection  system to run at near real-time frame rates. The  learned RPN also improves region proposal quality  and thus the overall object detection accuracy.

结论

     为了高效、准确地生成区域建议,我们提出了一种新的区域建议生成方法。通过与下游检测网络共享卷积特性,区域建议步骤几乎是免费的。我们的方法使一个统一的,基于深度学习的目标检测系统运行在接近实时帧率。学习的RPN还提高了区域建议质量,从而提高了总体目标检测精度。


论文

Shaoqing Ren, KaimingHe, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS, 2015

https://arxiv.org/abs/1506.01497v3



1、实验结果


1、PASCAL VOC 2007


      Example detections using RPN proposals on PASCAL VOC 2007 test. 下图为在PASCAL VOC 2007测试中,使用RPN进行目标检测的结果。The proposed method detects objects in a wide range of scales and aspect ratios. 该方法检测的目标对象,具有较宽的尺度和宽高比。

image.png



Detection results on PASCAL VOC 2007 test set

SS指采用选择性搜索但没有采用RPN的网络;unshared是指没有共享特征的网络。

RPN+VGG+shared能够得到最好的结果!

image.png

2、PASCAL VOC 2012


Detection results on PASCAL VOC 2012 test set

RPN+VGG+shared能够得到最好的结果!

image.png



测试的速度:VGG+SS+Fast R-CNN来说,每秒0.5帧,即处理一帧(幅图像)大概需要2秒。

VGG+RPN+Fast R-CNN来说,处理一帧(幅图像)大概需要0.2秒。

ZF网络更快,每秒17帧(图像),

image.png


相关文章
|
26天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
135 63
|
13天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
50 4
|
10天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
20 0
|
21天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
25 1
|
27天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
65 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
1月前
|
算法 安全 物联网
如何应用SM2算法进行身份认证
【10月更文挑战第5天】如何应用SM2算法进行身份认证
55 1
|
1月前
|
存储 算法 安全
SM2算法的应用场景有哪些?
【10月更文挑战第5天】SM2算法的应用场景有哪些?
64 1
|
1月前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
26 1
|
1月前
|
机器学习/深度学习 算法
深度学习中的优化算法及其应用
本文探讨了深度学习中常用的优化算法,包括梯度下降、随机梯度下降、动量方法和Adam方法。通过对比这些算法的优缺点及适用场景,帮助读者更好地理解和应用这些优化方法。
27 2

热门文章

最新文章