DL之FasterR-CNN:Faster R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略(一)

简介: DL之FasterR-CNN:Faster R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

Faster R-CNN算法的简介(论文介绍)


     Faster R-CNN,顾名思义,相对R-CNN有非常大的提高!


Abstract

     State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations.  Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region  proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image  convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional  network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to  generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN  into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with  “attention” mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3],  our detection system has a frame rate of 5fps (including all steps) on a GPU, while achieving state-of-the-art object detection  accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO  2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been  made publicly available.

摘要

     最先进的目标检测网络依赖于区域建议算法来假设目标位置。SPPnet[1]和Fast R-CNN[2]等技术的进步,降低了检测网络的运行时间,暴露了区域提案计算的瓶颈。在这项工作中,我们引入了一个与检测网络共享全图像卷积特性的区域建议网络(RPN),从而实现了几乎免费的区域建议。RPN是一个完全卷积的网络,它同时预测每个位置的对象边界和对象得分。对RPN进行端到端训练,生成高质量的区域建议,Fast R-CNN对其进行检测。通过共享卷积特性,我们进一步将RPN和Fast R-CNN合并成一个单独的网络——使用最近流行的具有“注意”机制的神经网络术语,RPN组件告诉统一的网络去哪里看。对于非常深的VGG-16型号[3],我们的检测系统在GPU上的帧率为5fps(包括所有步骤),同时在PASCAL VOC 2007、2012和MS COCO数据集上实现了最先进的目标检测精度,每张图像只有300个提案。在ILSVRC和COCO 2015年的比赛中,Faster R-CNN和RPN是在多个赛道上获得第一名的基础。代码已经公开。

CONCLUSION  

     We have presented RPNs for efficient and accurate  region proposal generation. By sharing convolutional features with the down-stream detection network, the  region proposal step is nearly cost-free. Our method  enables a unified, deep-learning-based object detection  system to run at near real-time frame rates. The  learned RPN also improves region proposal quality  and thus the overall object detection accuracy.

结论

     为了高效、准确地生成区域建议,我们提出了一种新的区域建议生成方法。通过与下游检测网络共享卷积特性,区域建议步骤几乎是免费的。我们的方法使一个统一的,基于深度学习的目标检测系统运行在接近实时帧率。学习的RPN还提高了区域建议质量,从而提高了总体目标检测精度。


论文

Shaoqing Ren, KaimingHe, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with region proposal networks. NIPS, 2015

https://arxiv.org/abs/1506.01497v3



1、实验结果


1、PASCAL VOC 2007


      Example detections using RPN proposals on PASCAL VOC 2007 test. 下图为在PASCAL VOC 2007测试中,使用RPN进行目标检测的结果。The proposed method detects objects in a wide range of scales and aspect ratios. 该方法检测的目标对象,具有较宽的尺度和宽高比。

image.png



Detection results on PASCAL VOC 2007 test set

SS指采用选择性搜索但没有采用RPN的网络;unshared是指没有共享特征的网络。

RPN+VGG+shared能够得到最好的结果!

image.png

2、PASCAL VOC 2012


Detection results on PASCAL VOC 2012 test set

RPN+VGG+shared能够得到最好的结果!

image.png



测试的速度:VGG+SS+Fast R-CNN来说,每秒0.5帧,即处理一帧(幅图像)大概需要2秒。

VGG+RPN+Fast R-CNN来说,处理一帧(幅图像)大概需要0.2秒。

ZF网络更快,每秒17帧(图像),

image.png


相关文章
|
25天前
|
人工智能 自然语言处理 算法
首届大模型顶会COLM 高分论文:偏好搜索算法PairS,让大模型进行文本评估更高效
【8月更文挑战第26天】在人工智能领域,尽管大型语言模型(LLMs)作为自动评估工具展现了巨大潜力,但在自然语言生成质量评估中仍存偏见问题,且难以确保一致性。为解决这一挑战,研究者开发了Pairwise-preference Search(PairS)算法,一种基于不确定性的搜索方法,通过成对比较及不确定性引导实现高效文本排名,有效减少了偏见、提升了评估效率和可解释性。PairS在多项任务中表现出色,相较于传统评分法有显著提升,为自然语言处理评估提供了新思路。更多详情参阅论文:https://arxiv.org/abs/2403.16950。
31 4
|
1月前
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
本文介绍了一种名为"Synaptic Intelligence"(SI)的持续学习方法,通过模拟生物神经网络的智能突触机制,解决了人工神经网络在学习新任务时的灾难性遗忘问题,并保持了计算效率。
28 1
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
|
1月前
|
机器学习/深度学习 人工智能 算法
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
本文介绍了一种新型的尺度无标度高聚类回声状态网络(SHESN)模型,该模型通过模拟生物神经系统的特性,如小世界现象和无标度分布,显著提高了逼近复杂非线性动力学系统的能力,并在Mackey-Glass动态系统和激光时间序列预测等问题上展示了其优越的性能。
23 1
【博士每天一篇论文-算法】Collective Behavior of a Small-World Recurrent Neural System With Scale-Free Distrib
|
1月前
|
机器学习/深度学习 算法 机器人
【博士每天一篇文献-算法】改进的PNN架构Lifelong learning with dynamically expandable networks
本文介绍了一种名为Dynamically Expandable Network(DEN)的深度神经网络架构,它能够在学习新任务的同时保持对旧任务的记忆,并通过动态扩展网络容量和选择性重训练机制,有效防止语义漂移,实现终身学习。
42 9
|
1月前
|
机器学习/深度学习 存储 人工智能
【博士每天一篇文献-算法】改进的PNN架构Progressive learning A deep learning framework for continual learning
本文提出了一种名为“Progressive learning”的深度学习框架,通过结合课程选择、渐进式模型容量增长和剪枝机制来解决持续学习问题,有效避免了灾难性遗忘并提高了学习效率。
31 4
|
1月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
1月前
|
机器学习/深度学习 算法 物联网
【博士每天一篇论文-算法】Overview of Echo State Networks using Different Reservoirs and Activation Functions
本文研究了在物联网网络中应用回声状态网络(ESN)进行交通预测的不同拓扑结构,通过与SARIMA、CNN和LSTM等传统算法的比较,发现特定配置的ESN在数据速率和数据包速率预测方面表现更佳,证明了ESN在网络流量预测中的有效性。
20 4
|
1月前
|
算法
突击面试:解密面试官的算法题集合
突击面试:解密面试官的算法题集合
|
1月前
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-算法】Optimal modularity and memory capacity of neural reservoirs
本文研究了神经网络的模块化与记忆性能之间的关系,发现存在一个最佳模块化程度,能够在局部凝聚性和全局连接性之间实现平衡,从而显著提高神经网络的预测性能和记忆能力,并为设计神经网络和理解大脑的模块化组织提供了新的见解。
17 0
【博士每天一篇论文-算法】Optimal modularity and memory capacity of neural reservoirs
|
1月前
|
机器学习/深度学习 算法 数据挖掘
【博士每天一篇文论文-算法】A small-world topology enhances the echo state property and signal propagationlun
本文研究了小世界拓扑结构在回声状态网络(ESN)中的作用,发现具有层级和模块化组织的神经网络展现出高聚类系数和小世界特性,这有助于提高学习性能和促进信号传播,为理解神经信息处理和构建高效循环神经网络提供了新的视角。
26 0
【博士每天一篇文论文-算法】A small-world topology enhances the echo state property and signal propagationlun

热门文章

最新文章