深度学习第3天:CNN卷积神经网络

简介: 深度学习第3天:CNN卷积神经网络



介绍

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于处理和识别具有网格结构的数据,如图像和视频。CNN在计算机视觉领域取得了巨大的成功,广泛应用于图像分类、目标检测、人脸识别等任务。


CNN的主要结构

CNN的主要结构其实就三个部分,卷积层,激励层,池化层,我们接下来主要介绍这三个部分

卷积层

卷积层中核心的东西叫做滤波器,他是一个有形状的矩阵,滤波器的作用是提取图片的特征,我们可以设置滤波器的数量,不同滤波器得到的图片包含图片的不同特征

这张图显示了一个滤波器的某时刻的运作过程,最左边的是原图,中间是滤波器,最右边是结果,它会进行一个内积运算,图中也展示了这个过程

我们可以这样思考,不同的滤波器与图片进行的内积结果不同,如果是一个提取轮廓的滤波器,我们可以理解原图中的轮廓特征经过滤波后会得到保留,而背景特征等信息就会逐渐消失

激励层

其实激励层不算一个层,它是作为卷积层的激活函数,它有以下几个优点

  1. 非线性变换: ReLU 引入了非线性变换,使得 CNN 能够学习更复杂的函数和特征。线性变换的叠加仍然是线性的,而引入非线性激活函数如 ReLU 可以打破这种线性性,使得网络更有能力逼近复杂的函数。
  2. 稀疏激活性: ReLU 对于正数的输入直接输出,而对于负数的输入则输出零。这种性质使得神经网络中的许多神经元变得非常稀疏,只有在输入为正数时才被激活。这有助于减少模型的参数数量,提高计算效率,并减轻过拟合的风险。
  3. 特征的稀疏性: ReLU 可以帮助网络更加稀疏地表示学到的特征。通过将负数的激活设为零,ReLU 有助于将不重要的特征过滤掉,保留对任务有贡献的特征。
  4. 解决梯度消失问题: 相较于一些传统的激活函数(如 sigmoid 和 tanh),ReLU 更容易处理梯度消失的问题。在反向传播过程中,ReLU 的梯度对于正数输入是常数,而对于负数输入是零,这有助于在深层网络中更好地传递梯度,避免梯度消失的问题。

池化层

池化层简而言之是用来降低特征图尺寸,保留重要特征的,提取区域就是池化层的大小,主要的池化层有两种,平均池化与最大池化

平均池化

顾名思义,平均池化就是取区域中的平均值

这幅图中池化层的大小是(2x2)

最大池化

最大池化就是取区域中的最大值

这幅图中池化层的大小也是(2x2)

Kears搭建CNN

搭建代码

以下是使用Keras搭建CNN的代码

# 导入必要的库
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
 
 
# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))

先导入Keras中的库,接着构建神经网络,Conv2D构建了一个卷积层,有32个滤波器,每个滤波器的大小是(3,3),MaxPooling2D代表使用最大池化层,池化层大小为(2,2)

直观感受卷积的作用

在这一部分我们通过可视化来直观感受一下卷积神经网络的作用

1.图片导入与处理

# 加载一张彩色图像
image_path = "hou.jpg"
img = load_img(image_path, target_size=(224, 224))
img_array = img_to_array(img)
img_array = img_array / 255.0  # 归一化
 
 
# 将图片扩展维度以符合模型的输入要求
img_array = np.expand_dims(img_array, axis=0)
  • 导入图片
  • 将图片格式转化为224x224
  • 获取图片矩阵
  • 归一化, 归一化不会改变原本的图像像素比例,目的是使模型训练过程中更容易收敛
  • 拓展维度以适应Keras模型的输入要求

2.构建网络

# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3), padding='same'))
model.add(MaxPooling2D((2, 2)))

我们这里就构建一层卷积层,池化层,正常任务中应该多一点,我们先仅了解卷积的作用

3.可视化

# 创建一个新的模型,只包含卷积层部分
convolution_model = Model(inputs=model.input, outputs=model.layers[-1].output)
 
# 获取卷积层的输出
conv_output = convolution_model.predict(img_array)
 
print(conv_output.shape)
 
# 可视化卷积层输出的多个特征图
for i in range(12):
    plt.subplot(4, 3, i+1)
    plt.imshow(conv_output[0, :, :, i], cmap='viridis')
    plt.axis('off')
plt.show()

经过卷积后,我们得到32张图片(有32个滤波器),我们展示前12张

得到以下图片

可以看到得到了图片的不同特征,边缘,纹理,光照,形状,轮廓等(经过多层卷积,这些特征会更加显著)

4.完整代码

这一部分我们搭建三层卷积层的完整代码,再看看效果

import numpy as np
from keras.models import Model
from keras.preprocessing.image import load_img, img_to_array
from keras.layers import Conv2D, MaxPooling2D
from keras.models import Sequential
import matplotlib.pyplot as plt
 
# 构建一个简单的卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
 
# 加载一张彩色图像
image_path = "hou.jpg"
img = load_img(image_path, target_size=(224, 224))
img_array = img_to_array(img)
img_array = img_array / 255.0  # 归一化
 
 
# 将图片扩展维度以符合模型的输入要求
img_array = np.expand_dims(img_array, axis=0)
 
# 创建一个新的模型,只包含卷积层部分
convolution_model = Model(inputs=model.input, outputs=model.layers[-1].output)
 
# 获取卷积层的输出
conv_output = convolution_model.predict(img_array)
 
print(conv_output.shape)
 
# 可视化卷积层输出的多个特征图
for i in range(12):
    plt.subplot(4, 3, i+1)
    plt.imshow(conv_output[0, :, :, i], cmap='viridis')
    plt.axis('off')
plt.show()

可以看到不同的特征更加的显著(无关特征逐渐消失),这样模型能更好地学习到不同的特征,以进行图像识别等任务

结语

  • 卷积神经网络主要用来处理图像,视频等,因为它有提取特征的作用
  • 一般通过改变层的数量,滤波器个数,池化层形状等参数调整神经网络的性能

感谢阅读,觉得有用的话就订阅下本专栏吧

相关文章
|
3月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
80 2
|
2月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
232 68
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
4月前
|
机器学习/深度学习 人工智能 算法
深度解析:基于卷积神经网络的宠物识别
宠物识别技术随着饲养规模扩大而兴起,传统手段存在局限性,基于卷积神经网络的宠物识别技术应运而生。快瞳AI通过优化MobileNet-SSD架构、多尺度特征融合及动态网络剪枝等技术,实现高效精准识别。其在智能家居、宠物医疗和防走失领域展现广泛应用前景,为宠物管理带来智能化解决方案,推动行业迈向新高度。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
3月前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
5月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
129 8
|
6月前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。

热门文章

最新文章