MAT之GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: MAT之GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性

输出结果

image.png

image.png




实现代码


global p    

global t    

global R  

global S1

global S2  

global S  

S1 = 10;

p = [0.01 0.01 0.00 0.90 0.05 0.00;

    0.00 0.00 0.00 0.40 0.50 0.00;

    0.80 0.00 0.10 0.00 0.00 0.00;

    0.00 0.20 0.10 0.00 0.00 0.10]';

t = [1.00 0.00 0.00 0.00;

    0.00 1.00 0.00 0.00;

    0.00 0.00 1.00 0.00;

    0.00 0.00 0.00 1.00]';

P_test = [0.05 0    0.9  0.12 0.02 0.02;

         0    0    0.9  0.05 0.05 0.05;

         0.01 0.02 0.45 0.22 0.04 0.06;

         0    0    0.4  0.5  0.1  0;

         0    0.1  0    0    0    0]';

net = newff(minmax(p),[S1,4],{'tansig','purelin'},'trainlm');

net.trainParam.show = 10;

net.trainParam.epochs = 2000;

net.trainParam.goal = 1.0e-3;

net.trainParam.lr = 0.1;

[net,tr] = train(net,p,t);

s_bp = sim(net,P_test)  

R = size(p,1);

S2 = size(t,1);

S = R*S1 + S1*S2 + S1 + S2;

aa = ones(S,1)*[-1,1];

popu = 50;  

initPpp = initializega(popu,aa,'gabpEval',[],[1e-6 1]);  

gen = 100;  

[x,endPop,bPop,trace] = ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...

                          'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);

figure(1)

plot(trace(:,1),1./trace(:,3),'r-');

title( 'GA优化BP神经网络,绘制均方误差变化曲线—Jason niu')

hold on

plot(trace(:,1),1./trace(:,2),'b-');

xlabel('Generation');

ylabel('Sum-Squared Error');

figure(2)

plot(trace(:,1),trace(:,3),'r-');

title( 'GA优化BP神经网络,绘制适应度函数变化曲线—Jason niu')

hold on

plot(trace(:,1),trace(:,2),'b-');

xlabel('Generation');

ylabel('Fittness');

[W1,B1,W2,B2,val] = gadecod(x);

net.IW{1,1} = W1;

net.LW{2,1} = W2;

net.b{1} = B1;

net.b{2} = B2;

net = train(net,p,t);

s_ga = sim(net,P_test)  

相关文章
|
15天前
|
存储 监控 虚拟化
Hyper V上网优化:提升虚拟机网络速度
要优化Hyper-V虚拟机的网络速度,可从以下几方面入手:1. 优化虚拟交换机配置,如选择合适的交换机类型、启用SR-IOV、配置VLAN和QoS策略;2. 调整网络适配器设置,选择适当的适配器类型并启用VRQ等;3. 优化宿主机网络配置,更新网卡固件和驱动,启用硬件加速;4. 使用性能监视工具监控网络流量;5. 其他措施如启用硬件虚拟化、使用外部存储、配置NLB等。通过合理配置,可显著提升网络性能。
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
23天前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
74 7
|
1月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
70 18
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
1月前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
105 17

热门文章

最新文章