TF之LiR:基于tensorflow实现机器学习之线性回归算法-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

TF之LiR:基于tensorflow实现机器学习之线性回归算法

简介: TF之LiR:基于tensorflow实现机器学习之线性回归算法
+关注继续查看

输出结果

image.png

代码设计


# -*- coding: utf-8 -*-

#TF之LiR:基于tensorflow实现机器学习之线性回归算法

import tensorflow as tf

import numpy

import matplotlib.pyplot as plt

rng =numpy.random

#参数设定

learning_rate=0.01

training_epochs=10000

display_step=50        #每隔50次迭代输出一次

#训练数据

train_X=numpy.asarray([……])

train_Y=numpy.asarray([……])

n_samples=train_X.shape[0]

print("train_X:",train_X)

print("train_Y:",train_Y)  

#设置placeholder

X=tf.placeholder("float")

Y=tf.placeholder("float")

#设置模型的权重和偏置,因为是不断更新的所以采用Variable定义

W=tf.Variable(rng.randn(),name="weight")

b=tf.Variable(rng.randn(),name="bias")

#设置线性回归方程LiR:w*x+b

pred=tf.add(tf.multiply(X,W),b)

cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)  #设置cost为均方差即reduce_sum函数

optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #梯度下降,minimize函数默认下自动修正w和b

init=tf.global_variables_initializer() #在session运算时初始化所有变量

#开始训练

with tf.Session() as sess:

   sess.run(init)                        #运行一下初始化的变量

   for epoch in range(training_epochs):  #输入所有训练数据

       for(x,y) in zip(train_X,train_Y):

           sess.run(optimizer,feed_dict={X:x,Y:y})

           

           #打印出每次迭代的log日志,每隔50个打印一次

           if (epoch+1) % display_step ==0:

               c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})

               print("迭代次数Epoch:","%04d" % (epoch+1),"下降值cost=","{:.9f}".format(c),

                     "W=",sess.run(W),"b=",sess.run(b))

   print("Optimizer Finished!")

   training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y})

   print("Training cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b))

   #绘图

   plt.rcParams['font.sans-serif']=['SimHei']

   plt.subplot(121)

   plt.plot(train_X, train_Y, 'ro', label='Original data')

   plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')

   plt.legend()

   plt.title("TF之LiR:Original data")

   

   

   #测试样本

   test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])

   test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831,2.92, 3.24, 1.35, 1.03])

   print("Testing... (Mean square loss Comparison)")

   testing_cost = sess.run(tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),

                           feed_dict={X:test_X,Y:test_Y}) # same function as cost above

   print("Testing cost=", testing_cost)

   print("Absolute mean square loss difference:", abs( training_cost - testing_cost))

   #绘图

   plt.subplot(122)

   plt.plot(test_X, test_Y, 'bo', label='Testing data')

   plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')

   plt.legend()

   plt.title("TF之LiR:Testing data")

   plt.show()


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Win10+Python3.6下Pytorch安装(基于conda或pip)
Win10+Python3.6下Pytorch安装(基于conda或pip)
9 0
基于RDKit的溶解度预测的机器学习模型
基于RDKit的溶解度预测的机器学习模型
6 0
基于Pytorch和RDKit建立QSAR模型
基于Pytorch和RDKit建立QSAR模型
6 0
Jupyter Notebook显示图像
Jupyter Notebook显示图像
6 0
基于机器学习的化合物活性预测模型
基于机器学习的化合物活性预测模型
4 0
BioPython安装与入门
BioPython安装与入门
7 0
《机器学习Python实践》——数据导入(CSV)
《机器学习Python实践》——数据导入(CSV)
6 0
只需十四步:从零开始掌握Python机器学习(附资源)
只需十四步:从零开始掌握Python机器学习(附资源)
4 0
DrugBank:小分子数据信息挖掘
DrugBank:小分子数据信息挖掘
10 0
初探Django2.1:Win10+Python3.6.6环境下安装Django
初探Django2.1:Win10+Python3.6.6环境下安装Django
5 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载