TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现(二)

简介: TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现

4、TF实现计算功能


TF:Tensorflow定义变量+常量,实现输出计数功能


输出结果

image.png

代码设计


#TF:Tensorflow定义变量+常量,实现输出计数功能

import tensorflow as tf

state = tf.Variable(0, name='Parameter_name_counter')  

#print(state.name)

one = tf.constant(1)  

new_value = tf.add(state, one)  

update = tf.assign(state, new_value)

init = tf.global_variables_initializer()  

with tf.Session() as sess:  

   sess.run(init)        

   for _ in range(8):

       sess.run(update)

       print(sess.run(state))


5、TF:Tensorflow完成一次线性函数计算


#TF:Tensorflow完成一次线性函数计算

#思路:TF像搭积木一样将各个不同的计算模块拼接成流程图,完成一次线性函数的计算,并在一个隐式会话中执行。

matrix1 = tf.constant([[3., 3.]])           #声明matrix1为TF的一个1*2的行向量

matrix2 = tf.constant([[2.],[2.]])          #声明matrix2为TF的一个2*1的列向量

product = tf.matmul(matrix1, matrix2)       #两个算子相乘,作为新算例

linear = tf.add(product, tf.constant(2.0))  #将product与一个标量2求和拼接.作为最终的linear算例

#直接在会话中执行linear算例,相当于将上面所有的单独算例拼接成流程图来执行

with tf.Session() as sess:

   result = sess.run(linear)

   print(result)


Tensorflow的基础案例


1、TF根据三维数据拟合平面


Python 程序生成了一些三维数据, 然后用一个平面拟合它.


import tensorflow as tf

import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.

x_data = np.float32(np.random.rand(2, 100)) # 随机输入

y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型

#

b = tf.Variable(tf.zeros([1]))

W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))

y = tf.matmul(W, x_data) + b

# 最小化方差

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

# 初始化变量

init = tf.initialize_all_variables()

# 启动图 (graph)

sess = tf.Session()

sess.run(init)

# 拟合平面

for step in xrange(0, 201):

   sess.run(train)

   if step % 20 == 0:

       print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]



Tensorflow的经典案例


后期更新……


相关文章
|
10天前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
1天前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
12天前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。
|
16天前
|
存储 程序员 Python
Python学习的自我理解和想法(2)
今日学习Python第二天,重点掌握字符串操作。内容涵盖字符串介绍、切片、长度统计、子串计数、大小写转换及查找位置等。通过B站黑马程序员课程跟随老师实践,非原创代码,旨在巩固基础知识与技能。
|
15天前
|
程序员 Python
Python学习的自我理解和想法(3)
这是学习Python第三天的内容总结,主要围绕字符串操作展开,包括字符串的提取、分割、合并、替换、判断、编码及格式化输出等,通过B站黑马程序员课程跟随老师实践,非原创代码。
|
12天前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
10天前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。
|
12天前
|
存储 索引 Python
Python学习的自我理解和想法(4)
今天是学习Python的第四天,主要学习了列表。列表是一种可变序列类型,可以存储任意类型的元素,支持索引和切片操作,并且有丰富的内置方法。主要内容包括列表的入门、关键要点、遍历、合并、判断元素是否存在、切片、添加和删除元素等。通过这些知识点,可以更好地理解和应用列表这一强大的数据结构。
|
12天前
|
索引 Python
Python学习的自我理解和想法(5)
这是我在B站千锋教育学习Python的第五天笔记,主要内容包括列表的操作,如排序(`sort()`、``sorted()``)、翻转(`reverse()`)、获取长度(`len()`)、最大最小值(`max()`、``min()``)、索引(`index()`)、嵌套列表和列表生成(`range`、列表生成式)。通过这些操作,可以更高效地处理数据。希望对大家有所帮助!
|
18天前
|
安全 程序员 Python
Python学习的自我理解和想法(1)
本篇博客记录了作者跟随B站“黑马程序员”课程学习Python的第一天心得,涵盖了`print()`、`input()`、`if...else`语句、三目运算符以及`for`和`while`循环的基础知识。通过实际编写代码,作者逐步理解并掌握了这些基本概念,为后续深入学习打下了良好基础。文中还特别强调了循环语句的重要性及其应用技巧。