TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现(二)

简介: TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现

4、TF实现计算功能


TF:Tensorflow定义变量+常量,实现输出计数功能


输出结果

image.png

代码设计


#TF:Tensorflow定义变量+常量,实现输出计数功能

import tensorflow as tf

state = tf.Variable(0, name='Parameter_name_counter')  

#print(state.name)

one = tf.constant(1)  

new_value = tf.add(state, one)  

update = tf.assign(state, new_value)

init = tf.global_variables_initializer()  

with tf.Session() as sess:  

   sess.run(init)        

   for _ in range(8):

       sess.run(update)

       print(sess.run(state))


5、TF:Tensorflow完成一次线性函数计算


#TF:Tensorflow完成一次线性函数计算

#思路:TF像搭积木一样将各个不同的计算模块拼接成流程图,完成一次线性函数的计算,并在一个隐式会话中执行。

matrix1 = tf.constant([[3., 3.]])           #声明matrix1为TF的一个1*2的行向量

matrix2 = tf.constant([[2.],[2.]])          #声明matrix2为TF的一个2*1的列向量

product = tf.matmul(matrix1, matrix2)       #两个算子相乘,作为新算例

linear = tf.add(product, tf.constant(2.0))  #将product与一个标量2求和拼接.作为最终的linear算例

#直接在会话中执行linear算例,相当于将上面所有的单独算例拼接成流程图来执行

with tf.Session() as sess:

   result = sess.run(linear)

   print(result)


Tensorflow的基础案例


1、TF根据三维数据拟合平面


Python 程序生成了一些三维数据, 然后用一个平面拟合它.


import tensorflow as tf

import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.

x_data = np.float32(np.random.rand(2, 100)) # 随机输入

y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型

#

b = tf.Variable(tf.zeros([1]))

W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))

y = tf.matmul(W, x_data) + b

# 最小化方差

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

# 初始化变量

init = tf.initialize_all_variables()

# 启动图 (graph)

sess = tf.Session()

sess.run(init)

# 拟合平面

for step in xrange(0, 201):

   sess.run(train)

   if step % 20 == 0:

       print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]



Tensorflow的经典案例


后期更新……


相关文章
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
5天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
5天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
7天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
6天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
7天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
7天前
|
人工智能 数据挖掘 程序员
Python编程入门:从零到英雄
【10月更文挑战第37天】本文将引导你走进Python编程的世界,无论你是初学者还是有一定基础的开发者,都能从中受益。我们将从最基础的语法开始讲解,逐步深入到更复杂的主题,如数据结构、面向对象编程和网络编程等。通过本文的学习,你将能够编写出自己的Python程序,实现各种功能。让我们一起踏上Python编程之旅吧!
|
8天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
10天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
27 4
|
12天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
20 6