TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现(二)

简介: TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现

4、TF实现计算功能


TF:Tensorflow定义变量+常量,实现输出计数功能


输出结果

image.png

代码设计


#TF:Tensorflow定义变量+常量,实现输出计数功能

import tensorflow as tf

state = tf.Variable(0, name='Parameter_name_counter')  

#print(state.name)

one = tf.constant(1)  

new_value = tf.add(state, one)  

update = tf.assign(state, new_value)

init = tf.global_variables_initializer()  

with tf.Session() as sess:  

   sess.run(init)        

   for _ in range(8):

       sess.run(update)

       print(sess.run(state))


5、TF:Tensorflow完成一次线性函数计算


#TF:Tensorflow完成一次线性函数计算

#思路:TF像搭积木一样将各个不同的计算模块拼接成流程图,完成一次线性函数的计算,并在一个隐式会话中执行。

matrix1 = tf.constant([[3., 3.]])           #声明matrix1为TF的一个1*2的行向量

matrix2 = tf.constant([[2.],[2.]])          #声明matrix2为TF的一个2*1的列向量

product = tf.matmul(matrix1, matrix2)       #两个算子相乘,作为新算例

linear = tf.add(product, tf.constant(2.0))  #将product与一个标量2求和拼接.作为最终的linear算例

#直接在会话中执行linear算例,相当于将上面所有的单独算例拼接成流程图来执行

with tf.Session() as sess:

   result = sess.run(linear)

   print(result)


Tensorflow的基础案例


1、TF根据三维数据拟合平面


Python 程序生成了一些三维数据, 然后用一个平面拟合它.


import tensorflow as tf

import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.

x_data = np.float32(np.random.rand(2, 100)) # 随机输入

y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型

#

b = tf.Variable(tf.zeros([1]))

W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))

y = tf.matmul(W, x_data) + b

# 最小化方差

loss = tf.reduce_mean(tf.square(y - y_data))

optimizer = tf.train.GradientDescentOptimizer(0.5)

train = optimizer.minimize(loss)

# 初始化变量

init = tf.initialize_all_variables()

# 启动图 (graph)

sess = tf.Session()

sess.run(init)

# 拟合平面

for step in xrange(0, 201):

   sess.run(train)

   if step % 20 == 0:

       print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]



Tensorflow的经典案例


后期更新……


相关文章
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
Python编程的十大神奇依赖库
Python编程的十大神奇依赖库
|
3天前
|
机器人 Java C++
python速成之循环分支结构学习
python速成之循环分支结构学习
16 1
|
3天前
|
Python
Python学习10
Python学习10
|
3天前
|
索引 Python
Python学习8
Python学习8
|
3天前
|
存储 算法 Python
Python学习7
Python学习7
|
1天前
|
Serverless 开发者 Python
Python编程中的函数式编程思想探究
【2月更文挑战第10天】传统的程序设计是以过程为中心,而函数式编程则将函数视为基本构建块,强调函数的纯洁性和不变性。本文将从Python编程语言的角度探讨函数式编程思想在实践中的应用,介绍函数式编程的概念、特点以及在Python中的具体实现方式,帮助读者更好地理解和运用函数式编程范式。
4 0
|
2天前
|
人工智能 前端开发 算法
Python 潮流周刊#18:Flask、Streamlit、Polars 的学习教程
Python 潮流周刊#18:Flask、Streamlit、Polars 的学习教程
10 4
|
2天前
|
Rust JavaScript Java
学习 27 门编程语言的长处,提升你的 Python 代码水平
学习 27 门编程语言的长处,提升你的 Python 代码水平
15 0
|
3天前
|
机器学习/深度学习 数据可视化 TensorFlow
50个Python学习资源,从初学者到高级玩家都有了!
50个Python学习资源,从初学者到高级玩家都有了!
|
3天前
|
存储 算法 Serverless
Python学习9
Python学习9

相关产品