TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现(一)

简介: TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现

目录


Tensorflow的使用入门


1、TF:使用Tensorflow输出一句话


2、TF实现加法


3、TF实现乘法


4、TF实现计算功能


5、TF:Tensorflow完成一次线性函数计算


Tensorflow的基础案例


1、TF根据三维数据拟合平面


Tensorflow的经典案例



Tensorflow的使用入门


1、TF:使用Tensorflow输出一句话


#TF:使用Tensorflow输出一句话

import tensorflow as tf

import numpy as np

greeting = tf.constant('Hello Google Tensorflow!')

sess = tf.Session()           #启动一个会话

result = sess.run(greeting)   #使用会话执行greeting计算模块

print(result)

sess.close()                  #关闭会话,这是一种显式关闭会话的方式


2、TF实现加法


张量和图的两种方式实现:声明两个常量 a 和 b,并定义一个加法运算。先定义一张图,然后运行它,


# -*- coding: utf-8 -*-

#1、张量和图的两种方式实现:声明两个常量 a 和 b,并定义一个加法运算。先定义一张图,然后运行它,

import tensorflow as tf

import os

import numpy as np

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

#T1

a=tf.constant([1,0,1,4])

b=tf.constant([ 1 , 0 , 0 , 4 ])

result=a+b

sess=tf. Session ()

print (sess.run(result))

sess.close

#T2

with  tf.Session()  as  sess:

   a=tf.constant([ 1 , 0 , 1 , 4 ])

   b=tf.constant([ 1 , 0 , 0 , 4 ])

   result=a+b

   print (sess.run(result))

#2、常量和变量

#TensorFlow 中最基本的单位是常量(Constant)、变量(Variable)和占位符(Placeholder)。常量定义后值和维度不可变,变量定义后值可变而维度不可变。在神经网络中,变量一般可作为储存权重和其他信息的矩阵,而常量可作为储存超参数或其他结构信息的变量。下面我们分别定义了常量与变量

#声明了不同的常量(tf.constant())

a = tf.constant( 2 , tf.int16)  #声明了不同的整数型数据

b = tf.constant( 4 , tf.float32)  #声明了不同的浮点型数据

c = tf.constant( 8 , tf.float32)  

#声明了不同的变量(tf.Variable())

d = tf. Variable ( 2 , tf.int16)

e = tf. Variable ( 4 , tf.float32)  

f = tf. Variable ( 8 , tf.float32)  

g = tf.constant(np.zeros(shape=( 2 , 2 ), dtype=np.float32))#声明结合了 TensorFlow 和 Numpy

h = tf.zeros([ 11 ], tf.int16)  #产生全是0的矩阵

i = tf.ones([ 2 , 2 ], tf.float32)  #产生全是 1的矩阵

j = tf.zeros([ 1000 , 4 , 3 ], tf.float64)  

k = tf. Variable (tf.zeros([ 2 , 2 ], tf.float32))  

l = tf. Variable (tf.zeros([ 5 , 6 , 5 ], tf.float32))

#声明一个 2 行 3 列的变量矩阵,该变量的值服从标准差为 1 的正态分布,并随机生成

w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))

#TensorFlow 还有 tf.truncated_normal() 函数,即截断正态分布随机数,它只保留 [mean-2*stddev,mean+2*stddev] 范围内的随机数

#案例应用:应用变量来定义神经网络中的权重矩阵和偏置项向量

weights = tf.Variable(tf.truncated_normal([256 * 256, 10]))

biases = tf. Variable (tf.zeros([10]))

print (weights.get_shape().as_list())

print (biases.get_shape().as_list())


3、TF实现乘法

Tensorflow之session会话的使用,定义两个矩阵,两种方法输出2个矩阵相乘的结果


import tensorflow as tf

matrix1 = tf.constant([[3, 20]])

matrix2 = tf.constant([[6],      

                      [100]])

product = tf.matmul(matrix1, matrix2)  

# method 1,常规方法

sess = tf.Session()        

result = sess.run(product)

print(result)

sess.close()            

# # method 2,with方法

# with tf.Session() as sess:   #

#     result2 = sess.run(product)

#     print(result2)


相关文章
|
4天前
|
搜索推荐 算法 程序员
6个案例15分钟让你了解Python套路
Python以其简洁易读的语法,成为编程初学者的首选。本文通过7个经典代码案例,带你快速了解Python编程的核心概念和常用技巧: 1. **九九乘法口诀**:使用嵌套循环打印乘法表。 2. **列表求和**:展示两种方法(for循环和内置函数sum())计算列表元素之和。 3. **素数判断**:编写函数判断一个数是否为素数。 4. **斐波那契数列**:生成指定长度的斐波那契数列。 5. **冒泡排序**:实现简单的冒泡排序算法。 6. **汉诺塔问题**:通过递归解决经典的汉诺塔问题。 这些案例不仅展示了Python的基础语法,更体现了编程思维的重要性,帮助初学者逐步掌握编程套路。
26 2
|
5月前
|
数据采集 前端开发 NoSQL
Python编程异步爬虫实战案例
Python编程异步爬虫实战案例
112 2
|
5月前
|
数据采集 自然语言处理 API
Python反爬案例——验证码的识别
Python反爬案例——验证码的识别
83 2
|
5月前
|
iOS开发 MacOS Python
Python编程小案例—利用flask查询本机IP归属并输出网页图片
Python编程小案例—利用flask查询本机IP归属并输出网页图片
54 1
|
5月前
|
TensorFlow 算法框架/工具
Tensorflow学习笔记(二):各种tf类型的函数用法集合
这篇文章总结了TensorFlow中各种函数的用法,包括创建张量、设备管理、数据类型转换、随机数生成等基础知识。
234 0
|
5月前
|
存储 算法 API
Python学习五:函数、参数(必选、可选、可变)、变量、lambda表达式、内置函数总结、案例
这篇文章是关于Python函数、参数、变量、lambda表达式、内置函数的详细总结,包含了基础知识点和相关作业练习。
74 0
|
5月前
|
人工智能 API iOS开发
ChatGPT编程Python小案例(拿来就用)—解压zip压缩文
ChatGPT编程Python小案例(拿来就用)—解压zip压缩文
54 0
|
3月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
424 55
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
450 5
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
188 3

热门文章

最新文章