TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现(一)

简介: TF学习:Tensorflow基础案例、经典案例集合——基于python编程代码的实现

目录


Tensorflow的使用入门


1、TF:使用Tensorflow输出一句话


2、TF实现加法


3、TF实现乘法


4、TF实现计算功能


5、TF:Tensorflow完成一次线性函数计算


Tensorflow的基础案例


1、TF根据三维数据拟合平面


Tensorflow的经典案例



Tensorflow的使用入门


1、TF:使用Tensorflow输出一句话


#TF:使用Tensorflow输出一句话

import tensorflow as tf

import numpy as np

greeting = tf.constant('Hello Google Tensorflow!')

sess = tf.Session()           #启动一个会话

result = sess.run(greeting)   #使用会话执行greeting计算模块

print(result)

sess.close()                  #关闭会话,这是一种显式关闭会话的方式


2、TF实现加法


张量和图的两种方式实现:声明两个常量 a 和 b,并定义一个加法运算。先定义一张图,然后运行它,


# -*- coding: utf-8 -*-

#1、张量和图的两种方式实现:声明两个常量 a 和 b,并定义一个加法运算。先定义一张图,然后运行它,

import tensorflow as tf

import os

import numpy as np

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

#T1

a=tf.constant([1,0,1,4])

b=tf.constant([ 1 , 0 , 0 , 4 ])

result=a+b

sess=tf. Session ()

print (sess.run(result))

sess.close

#T2

with  tf.Session()  as  sess:

   a=tf.constant([ 1 , 0 , 1 , 4 ])

   b=tf.constant([ 1 , 0 , 0 , 4 ])

   result=a+b

   print (sess.run(result))

#2、常量和变量

#TensorFlow 中最基本的单位是常量(Constant)、变量(Variable)和占位符(Placeholder)。常量定义后值和维度不可变,变量定义后值可变而维度不可变。在神经网络中,变量一般可作为储存权重和其他信息的矩阵,而常量可作为储存超参数或其他结构信息的变量。下面我们分别定义了常量与变量

#声明了不同的常量(tf.constant())

a = tf.constant( 2 , tf.int16)  #声明了不同的整数型数据

b = tf.constant( 4 , tf.float32)  #声明了不同的浮点型数据

c = tf.constant( 8 , tf.float32)  

#声明了不同的变量(tf.Variable())

d = tf. Variable ( 2 , tf.int16)

e = tf. Variable ( 4 , tf.float32)  

f = tf. Variable ( 8 , tf.float32)  

g = tf.constant(np.zeros(shape=( 2 , 2 ), dtype=np.float32))#声明结合了 TensorFlow 和 Numpy

h = tf.zeros([ 11 ], tf.int16)  #产生全是0的矩阵

i = tf.ones([ 2 , 2 ], tf.float32)  #产生全是 1的矩阵

j = tf.zeros([ 1000 , 4 , 3 ], tf.float64)  

k = tf. Variable (tf.zeros([ 2 , 2 ], tf.float32))  

l = tf. Variable (tf.zeros([ 5 , 6 , 5 ], tf.float32))

#声明一个 2 行 3 列的变量矩阵,该变量的值服从标准差为 1 的正态分布,并随机生成

w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))

#TensorFlow 还有 tf.truncated_normal() 函数,即截断正态分布随机数,它只保留 [mean-2*stddev,mean+2*stddev] 范围内的随机数

#案例应用:应用变量来定义神经网络中的权重矩阵和偏置项向量

weights = tf.Variable(tf.truncated_normal([256 * 256, 10]))

biases = tf. Variable (tf.zeros([10]))

print (weights.get_shape().as_list())

print (biases.get_shape().as_list())


3、TF实现乘法

Tensorflow之session会话的使用,定义两个矩阵,两种方法输出2个矩阵相乘的结果


import tensorflow as tf

matrix1 = tf.constant([[3, 20]])

matrix2 = tf.constant([[6],      

                      [100]])

product = tf.matmul(matrix1, matrix2)  

# method 1,常规方法

sess = tf.Session()        

result = sess.run(product)

print(result)

sess.close()            

# # method 2,with方法

# with tf.Session() as sess:   #

#     result2 = sess.run(product)

#     print(result2)


相关文章
|
25天前
|
SQL 定位技术 API
GEE python:按照矢量中的几何位置、属性名称和字符串去筛选矢量集合
GEE python:按照矢量中的几何位置、属性名称和字符串去筛选矢量集合
19 0
|
14天前
|
数据采集 JSON JavaScript
Python爬虫案例:抓取猫眼电影排行榜
python爬取猫眼电影排行榜数据分析,实战。(正则表达式,xpath,beautifulsoup)【2月更文挑战第11天】
43 2
Python爬虫案例:抓取猫眼电影排行榜
|
3天前
|
机器学习/深度学习 Python
神经网络回归案例(python
神经网络回归案例(python
9 0
|
11天前
|
机器学习/深度学习 PyTorch TensorFlow
Python中的深度学习:TensorFlow与PyTorch的选择与使用
Python中的深度学习:TensorFlow与PyTorch的选择与使用
|
14天前
|
Web App开发 数据采集 前端开发
Python Selenium 爬虫淘宝案例
本文基于Selenium + MongoDB + ChromeDriver + Pyquery实现爬虫淘宝案例。【2月更文挑战第11天】
46 1
Python Selenium 爬虫淘宝案例
|
25天前
|
机器学习/深度学习 自然语言处理 JavaScript
GEE机器学习——最大熵分类器案例分析(JavaScript和python代码)
GEE机器学习——最大熵分类器案例分析(JavaScript和python代码)
16 0
|
26天前
|
机器学习/深度学习 数据挖掘 定位技术
预测未来:Python 数据挖掘案例
数据挖掘是从大量数据中提取有用信息的过程。通过应用数据挖掘技术,我们可以发现数据中的模式、关系和趋势,从而做出预测和决策。在 Python 中,有许多强大的数据挖掘库和工具可供使用。本文将介绍一个使用 Python 进行数据挖掘以预测未来的案例。
|
26天前
|
存储 SQL 数据库连接
连接并操作数据库:Python 数据库案例
数据库是一种用于存储和管理数据的工具,它以一种有组织的方式将数据存储在文件或内存中,以便于检索和处理。数据库系统通常使用 SQL(Structured Query Language)语言来进行数据的操作,包括数据的插入、查询、更新和删除等。
|
26天前
|
存储 Python 容器
python数据容器之集合相关的操作
python数据容器之集合相关的操作
14 1
|
1月前
|
SQL 算法 数据挖掘
Python中处理无效数据的详细教程(附案例实战)
Python中处理无效数据的详细教程(附案例实战)
36 0

相关产品