一周AI最火论文 | 童年的手绘漫画有望复兴?AI建立草稿到模型映射

简介: 一周AI最火论文 | 童年的手绘漫画有望复兴?AI建立草稿到模型映射

本周关键词:图采样、3D结构、增强学习

本周最佳学术研究

从手绘草稿重建3D形状

研究人员称,这是首次有关从单视图手绘重建3D形状的研究。他们建议使用合成草图进行训练,并引入标准化模块来处理数据不足的问题并丰富草图的样式。该模型被证明能够成功地将不同视图和不同类别的自由手绘重建为3D形状。他们希望这项研究可以在基于手绘的3D设计或游戏等应用中释放更多手绘的潜力,使大众更容易使用它们。

原文:
https://arxiv.org/abs/2006.09694v1

用于图采样的Python库

采样图是数据挖掘中的一项重要任务。本文的研究人员提供了名为Little Ball of Fur的Python库,其中包含了二十多种图采样算法。他们的目标是使大量专业人员、研究人员和学生可以在一个简化的框架中使用基于节点、边缘和探索的网络采样技术。

他们着重于创建一个具有一致的应用程序公共接口的框架,这个接口具有便利的设计、通用的输入数据要求以及合理的算法基线设置。本文通过示例性代码片段详细概述了框架设计基础,还通过估算多种社交网络和网络图的全球统计数据,证明了该库的实用性。实验表明,Little Fur of Fur 库可以大大加快节点和整个图形的嵌入技术,并且只略微降低提炼特征的预测值。

原文:
https://arxiv.org/abs/2006.04311v1

3D形状中可学习的变形

Brain、加州大学伯克利分校和斯坦福大学的研究人员近期联合发布的这篇论文提出了一种基于流的模型,名为ShapeFlow模型。该模型可用于学习3D形状的所有类的变形空间,尽管这些类具有较大类内差异。

ShapeFlow是一种基于流的模型,能够通过使用变形流来构建高质量的形状空间。研究人员分析表明,该模型可以避免自相交,并提供多种方式来规范体积、等轴测图和对称性等。ShapeFlow可用于对现有模板变形来重新构造新形状。当前框架的一个主要限制是它没有用于匹配形状的语义监督。未来的方向包括通过对相似的矢量场进行分组来分析几何形状的零件结构并探索语义感知的变形。此外,ShapeFlow可用于在给出示踪剂观测值的情况下推断螺线管流场的逆问题,这是工程物理学中的重要问题。

原文:
https://arxiv.org/abs/2006.07982v1

用于增强型机器学习的轻量级代码框架

这项工作提出了ktrain,这是一种用于机器学习的轻量级代码框。ktrain当前支持对文本、视觉和图形数据的训练模型。

作为对TensorFlow Keras框架的简单包装,它也足够灵活,可用于自定义的模型和数据格式。受其他轻量级代码(和无代码)开源ML库(例如fastai和ludwig)的启发,ktrain希望能够让数据科学的初学者和领域专家都能来用它以最少的代码量构建复杂的机器学习项目,并以此进一步使机器学习“平民化”。而即使是对于需要快速原型化深度学习解决方案的经验丰富的从业者,它也是一个强有力的工具。

原文:
https://arxiv.org/abs/2004.10703v3

使用自我监督改进语音表示和个性化模型

在本文中,Google AI为语音相关应用程序的表征学习做出了三点贡献。首先,他们提出了一种用于比较语音表征的NOn语义语音(NOSS)基准,其中包括各种数据集和基准任务,例如语音情感识别、语言识别和说话者识别。这些数据集可在TensorFlow数据集的“音频”部分获得。

其次,他们创建并开源了TRIpLet Loss网络(TRILL),这是一种新模型,其规模很小,可以在设备上执行和微调,同时仍胜过其他表征形式。第三,他们比较了不同的表征形式并进行了大规模研究,还开源了用于计算新表征形式性能的代码。

评估NOSS的代码位于GitHub上,数据集位于TensorFlow数据集上,而TRILL模型位于AI Hub上。

Github:
https://github.com/google-research/google-research/tree/master/non_semantic_speech_benchmark

TensorFlow数据集:
https://www.tensorflow.org/datasets/catalog/overview#audio

AI Hub:
https://aihub.cloud.google.com/u/0/s?q=nonsemantic-speech-benchmark

原文:
https://arxiv.org/abs/2002.12764

其他爆款论文

利用离线数据集加速在线强化学习:
https://arxiv.org/abs/2006.09359v1

既然我能看见,我就能改进它,在边缘上启用CNN数据驱动的微调:
https://arxiv.org/abs/2006.08554v1

Raspberry Pi上的Google Assistant和Amazon Alexa:
https://arxiv.org/abs/2006.08220v1

当神经网络无法学习周期函数时我们应该如何修复:
https://arxiv.org/abs/2006.08195v1

3D斑马鱼跟踪基准数据集:
https://vap.aau.dk/3d-zef/

AI大事件

机器学习的“奥德赛”:专访Kaggle大师Luca Massaron:
https://analyticsindiamag.com/kaggle-luca-massaron-interview/

将公司价值提高到1亿美元的人工智能专家Mike Bugembe:
https://www.blackenterprise.com/mike-bugembe-artificial-intelligence-got-company-sold-100-million/

李开复表示,美国在人工智能应用领域正在赶超中国:
https://time.com/5851734/kai-fu-lee-ai-us-catching-up-to-china/

拉筹伯大学使用人工智能为癌症患者提供心理健康护理:
https://www.zdnet.com/article/la-trobe-university-uses-ai-to-bring-mental-health-care-to-cancer-patients/

相关文章
|
29天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
81 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
110 2
|
2月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
2月前
|
机器学习/深度学习 人工智能 UED
OpenAI o1模型:AI通用复杂推理的新篇章
OpenAI发布了其最新的AI模型——o1,这款模型以其独特的复杂推理能力和全新的训练方式,引起了业界的广泛关注。今天,我们就来深入剖析o1模型的特点、背后的原理,以及一些有趣的八卦信息。
318 73
|
21天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
40 4
|
30天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
68 6
|
1月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
52 4
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
54 1
|
2月前
|
存储 人工智能 算法
阿里云AI基础设施升级亮相,模型算力利用率提升超20%
阿里云AI基础设施升级亮相,模型算力利用率提升超20%
219 18

热门文章

最新文章