MySQL优化案例:半连接(semi join)优化方式导致的查询性能低下

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:


以下是来自DBA+社群MySQL领域原创专家李海翔分享的MySQL优化案例,关于MySQL V5.6.x/5.7.x SQL查询性能问题。

 

专家简介

 
 


李海翔

网名:那海蓝蓝

DBA+社群MySQL领域原创专家


从事数据库研发、数据库测试与技术管理等工作10余年,对数据库的内核有深入研究,擅长于PostgreSQL和MySQL等开源数据库的内核与架构。现任职于Oracle公司MySQL全球开发团队,从事查询优化技术的研究和MySQL查询优化器的开发工作。著有《数据库查询优化器的艺术》一书。

 

 

 

一、简单创建一表,并使用存储过程插入一部分数据



二、执行如下查询


Q1:



Q2:Q2比Q1只多了一个使用OR子句连接的条件,数据中没有满足此条件的数据



问题:  Q1和Q2哪个查询快?快者比慢者能快出几倍?为什么?


三、实际运行结果


对Q1和Q2稍加改造,目的是避免有大量的查询结果输出。目标列使用COUNT()函数替换。



看红色字体,所耗费的时间,Q1是Q2的近乎40倍。为什么?


四、探索原因


第一招:察看执行计划



对比执行计划,发现Q1使用了“MATERIALIZED”物化方式存储子查询的临时结果,是不是物化导致了Q1慢呢?


第二招:察看IO




Q2和Q1不一致之处在于Q2的“Handler_read_key”值20002远远比比Q1的2高,这说明Q2更多地利用了索引。


且看MySQL官方解释如下:


Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that your tables are properly indexed for your queries.


问题:


为什么Q2会有更多的索引读?索引是从哪里来的?


Q1被物化,意味着Q1使用了临时表;而Q2子查询是否被物化是否使用了临时表呢?


五、新的疑问,再次探索


之下如下操作,注意show warnings技巧的使用。查询结果作了形式的调整,便于阅读。



可以看出,Q1的子查询被物化后,又作了半连接优化,意味着子查询被上拉方式优化。



Q2表明,首先使用了临时表,但是和Q1不同的是,子查询没有被上拉优化。


但是,MySQL对于临时表的使用,会自动创建索引,所以我们能看到在“auto_key”上执行了“primary_index_lookup”。这就是Q2快于Q1的原因。也是为什么Q2的索引读计数器的值较大的原因。


问题:半连接优化


六、继续探索



执行计划似乎改变不大,但类似了Q2的执行计划。(哈哈,可执行show warnings;命令看看,获取更详细的信息才能得出更靠谱的结论



在禁止了半连接操作之后,执行速度一下子坐上了飞机,有了40余倍的提升。


七、结论


1. Q1使用了物化+半连接优化,Q2是子查询,但没有使用半连接优化,可见MySQL中半连接优化的效率未必高。


2. 似乎物化的子查询用半连接上拉,MySQL的判断条件还是存在一点儿问题。



本文来自云栖社区合作伙伴"DBAplus",原文发布时间:2015-12-07

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
2月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
128 0
|
4月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
3月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
136 0
|
19天前
|
存储 关系型数据库 MySQL
使用命令行cmd查询MySQL表结构信息技巧分享。
掌握了这些命令和技巧,您就能快速并有效地从命令行中查询MySQL表的结构信息,进而支持数据库维护、架构审查和优化等工作。
142 9
|
23天前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
65 6
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
关系型数据库 MySQL 分布式数据库
Super MySQL|揭秘PolarDB全异步执行架构,高并发场景性能利器
阿里云瑶池旗下的云原生数据库PolarDB MySQL版设计了基于协程的全异步执行架构,实现鉴权、事务提交、锁等待等核心逻辑的异步化执行,这是业界首个真正意义上实现全异步执行架构的MySQL数据库产品,显著提升了PolarDB MySQL的高并发处理能力,其中通用写入性能提升超过70%,长尾延迟降低60%以上。
|
2月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
111 0
|
3月前
|
关系型数据库 MySQL 数据库
MySQL报错:未知系统变量'tx_isolation'及隔离级别查询
记住,选择合适的隔离级别,就像是在风平浪静的湖面上找到适合的划船速度——既要快到能赶上午饭(性能),又不至于翻船(数据一致性问题)。
178 3
|
4月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?

推荐镜像

更多