模型部署优化的学习路线是什么?

简介: 我现在只会 Python,每天工作就是写脚本处理数据、训练模型,但是没什么工程能力,我想往模型部署优化、算法落地这个方向发展,请问该怎么学习与规划?

模型部署优化这个方向其实比较宽泛。从模型完成训练,到最终将模型部署到实际硬件上,整个流程中会涉及到很多不同层面的工作,每一个环节对技术点的要求也不尽相同。

部署的流程大致可以分为以下几个环节:

image.png

一、模型转换

从训练框架得到模型后,根据需求转换到相应的模型格式。模型格式的选择通常是根据公司业务端 SDK 的需求,通常为 caffe 模型或 onnx 模型,以方便模型在不同的框架之间适配。

该环节的工作需要对相应的训练框架以及 caffe/onnx 等模型格式有所了解。

常用的 Pytorch 和 TensorFlow 等框架都有十分成熟的社区和对应的博客或教程;caffe 和 onnx 模型格式也有很多可参考和学习的公开文档。

即使没找到有可参考的文章时,好在二者都是开源的,依然可以通过对源码和样例代码的阅读来寻找答案。

二、模型优化

此处的模型优化是指与后端无关的通用优化,比如常量折叠、算数优化、依赖优化、函数优化、算子融合以及模型信息简化等等。

部分训练框架会在训练模型导出时就包含部分上述优化过程,同时如果模型格式进行了转换操作,不同 IR 表示之间的差异可能会引入一些冗余或可优化的计算,因此在模型转换后通常也会进行一部分的模型优化操作。

该环节的工作需要对计算图的执行流程、各个 op 的计算定义、程序运行性能模型有一定了解,才能知道如果进行模型优化,如何保证优化后的模型具有更好的性能。

了解得越深入,越可以挖掘到更多的模型潜在性能。

三、模型压缩

广义上来讲,模型压缩也属于模型优化的一部分。模型压缩本身也包括很多种方法,比如剪枝、蒸馏、量化等等。模型压缩的根本目的是希望获得一个较小的模型,减少存储需求的同时降低计算量,从而达到加速的目的。

该环节的工作需要对压缩算法本身、模型涉及到的算法任务及模型结构设计、硬件平台计算流程三个方面都有一定的了解。

当因模型压缩操作导致模型精度下降时,对模型算法的了解,和该模型在硬件上的计算细节有足够的了解,才能分析出精度下降的原因,并给出针对性的解决方案。

对于模型压缩更重要的往往是工程经验, 因为在不同的硬件后端上部署相同的模型时,由于硬件计算的差异性,对精度的影响往往也不尽相同,这方面只有通过积累工程经验来不断提升。

OpenPPL也在逐步开源自己的模型压缩工具链,并对上述提到的模型算法、压缩算法和硬件平台适配等方面的知识进行介绍。

四、模型部署

模型部署是整个过程中最复杂的环节。从工程上讲,主要的核心任务是模型打包、模型加密,并进行SDK封装。

在一个实际的产品中,往往会用到多个模型。

模型打包是指将模型涉及到的前后处理,以及多个模型整合到一起,并加入一些其他描述性文件。模型打包的格式和模型加密的方法与具体的 SDK 相关。在该环节中主要涉及到的技能与 SDK 开发更为紧密。

从功能上讲,对部署最后的性能影响最大的肯定是SDK中包含的后端库,即实际运行模型的推理库。开发一个高性能推理库所需要的技能点就要更为广泛,并且专业。

并行计算的编程思想在不同的平台上是通用的,但不同的硬件架构的有着各自的特点,推理库的开发思路也不尽相同,这也就要求对开发后端的架构体系有着一定的了解。

具体到不同架构的编程学习,建议参考当前各大厂开源的推理库来进一步学习。

目录
相关文章
|
7月前
|
设计模式 前端开发 Java
KnowStreaming系列教程第二篇——项目整体架构分析
KnowStreaming系列教程第二篇——项目整体架构分析
87 0
|
机器学习/深度学习 编解码 算法
超详细!手把手带你轻松掌握 MMDetection 整体构建流程(一)
作为系列文章的第一篇解读,本文主要是从整体框架构建角度来解析,不会涉及到具体算法和代码,希望通过本文讲解: - MMDetection 整体构建流程和思想 - 目标检测算法核心组件划分 - 目标检测核心组件功能
945 0
超详细!手把手带你轻松掌握 MMDetection 整体构建流程(一)
|
11小时前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
35 18
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
机器学习/深度学习 存储 人工智能
Gradio入门到进阶全网最详细教程[一]:快速搭建AI算法可视化部署演示(侧重项目搭建和案例分享)
Gradio入门到进阶全网最详细教程[一]:快速搭建AI算法可视化部署演示(侧重项目搭建和案例分享)
|
2月前
|
存储 缓存 算法
前端算法:优化与实战技巧的深度探索
【10月更文挑战第21天】前端算法:优化与实战技巧的深度探索
24 1
|
4月前
|
机器学习/深度学习 自然语言处理 TensorFlow
迁移学习入门指南超棒!教你如何利用预训练模型加速 TensorFlow 项目开发,开启高效之旅!
【8月更文挑战第31天】在深度学习领域,迁移学习是种在资源有限的情况下快速开发高性能模型的技术。本指南介绍如何在TensorFlow中利用预训练模型实现迁移学习,包括选择、加载预训练模型、自定义顶层、冻结预训练层及训练模型等内容,以帮助提升模型性能和训练速度。
82 0
|
7月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
|
7月前
|
存储 人工智能 数据库
【AI大模型应用开发】MemGPT原理与快速上手:这可能是目前管理大模型记忆的最专业的框架和思路
【AI大模型应用开发】MemGPT原理与快速上手:这可能是目前管理大模型记忆的最专业的框架和思路
461 0
|
7月前
|
运维 Java 开发工具
Java后端学习路线6大维度详细总结(编程基础+开发工具+应用框架+运维知识+成神之路+平稳降落)【可作为知识点梳理列表】【点击可查看高清原图】
Java后端学习路线6大维度详细总结(编程基础+开发工具+应用框架+运维知识+成神之路+平稳降落)【可作为知识点梳理列表】【点击可查看高清原图】
99 0
|
机器学习/深度学习 人工智能 自然语言处理
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)
Gradio入门到进阶全网最详细教程[二]:快速搭建AI算法可视化部署演示(侧重参数详解和案例实践)