实时计算 Flink 版应用场景与产品介绍

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 本文由阿里巴巴高级产品专家陈守元老师分享,详细讲解实时计算 Flink 的具体业务场景并分享实时计算 Flink 的相关应用案例。

作者:陈守元(巴真),阿里巴巴高级产品专家

摘要:本文由阿里巴巴高级产品专家陈守元老师分享,详细讲解实时计算 Flink 的具体业务场景并分享实时计算 Flink 的相关应用案例。

内容分为以下四部分:
● 技术原理
● 技术应用
● 应用场景
● 行业案例

1、技术原理

关于技术原理这部分的介绍,下文主要从通晓原理、容易混淆的四大概念、批处理和流处理的对比、事件触发的流处理四个方面展开介绍。

通晓原理举一反三

image.png

从上图所示的关于实时计算 Flink 业务架构图中可以发现,平时在做业务开发或是架构设计的时候,开发人员需要通晓产品背后的技术原理,只有这样做开发的过程中才能避免非必要的失误,从而提高数据开发的效率。对于很多架构师来讲,只有通晓了技术背后的原理,才能养成全局的架构嗅觉。

容易混淆的四大概念

image.png

下图所示的数据处理时效性的四大概念是从不同维度描述的,分别代表计算的不同特征,它们分别是:实时计算、离线计算、流计算(或称流处理)和批处理。这四个概念其实是从两个维度来描述的,横坐标轴上面的计算和下面的处理,指代的是业务的特征。

实时计算它描述快速的计算过程和快速的请求响应。实时计算描述的是计算链路的表达,是实时业务实时计算的需求特征。离线计算强调的是它的离线特征,即非实时的,非实时的计算过程和非实时的请求响应。业务特征是,不求特快,只求结果。

所以横向坐标轴上面描述的本质都是业务处理需求,而坐标轴下面描述的是技术需求。

流计算(流处理)强调的技术特征是流式处理。流式处理有有几大特征,包括常驻、事件触发和通常具备实时性。批处理(又称批计算)强调了计算通过批示进行处理。它的特征是,非常驻、外界触发和通常不具备实时性。

批处理和流处理的对比

image.png

对于批处理来说,处理分为三步。第一步是数据装载;第二步是批量计算,系统会把这份数据加载到存储里面然后构建相应元数据或者索引等操作;第三步是外界发起数据请求触发计算,计算出结果返回给用户。对于流计算来说,它的方式完全不一样。通常来说用户要把一个流式作业提前写好,然后提交到集群或计算系统里面。(由上图右侧所示)数据写入一条,流式计算就会触发一次并运算一次,然后写出一个结果,整个过程很短。

所以总结而言,对于批处理来说,数据装载、数据计算本身是完全脱节的过程,数据是一批批加载,计算也是一批批请求,这就是批处理(批计算);同时它也是一个高时延的计算;另外它还是一个主动发起的计算,所谓的主动发起就是用户主动发起计算请求的。对于流式计算来说,它正好与之相反。流计算是持续的,只要有数据输入就会持续的计算;另外它是低时延的;它也是一个事件触发的计算。

事件触发的流处理

image.png

关于流处理,从维基百科上可以提炼3个关键词,Event,Stream和Process,本名为事件流处理,日常在工程实践中会被简化称为流处理或流计算。三个关键词准确地描述了流处理的三大特点:

● Event说明了流处理是由事件触发,同时事件又具有极强的时间性,比如事件发生时间、事件处理时间、事件进入时间等等。

● Stream代表的是事件流,也就是上图说明的“无界的事件集合”。意思是对于流计算来说,它的数据是持续的、源源不断地进入流计算系统的。也就是说,只要不人为终止它,数据便会源源不断地进入消息队列,最终进入流式处理系统。所以它本质上是一个无穷无尽的事件流,我们称之为无界的事件集合。

● Process是指流程,流处理作为一个处理系统也是一个计算系统,同样也是一个Process流程系统。对于流计算来说,数据进入一条就会触发一条,然后处理一条再输出,整个过程需要非常快的速度,也就是我们说得实时在线处理。

流式处理的价值

流式处理的价值在于当数据进来产生后,能够被迅速处理计算,然后迅速得到业务结果,这就是流计算的价值。需要流计算的地方,一般是数据价值随着时间流逝而迅速降低的场景。

image.png

对于离线计算来说,数据放一小时、一天或一个月,都不会影响计算,但对于实时计算来说,一旦数据没能做到及时流处理并即刻产生结果,那么数据的价值就会随着时间的流逝而逐渐降低。

关于流式处理的业务价值,可以举个例子,相信很多人对一年一度的双11都很熟悉,每年双11显示总交易额的实时大屏就是实时计算的一个最佳应用。另外一个更倍显价值的案例就是关于淘宝或是天猫的卖家通过实时的广告流量数据来调动或指定广告策略并执行,这样对他们的实时业务做到最大的助力。

2、技术场景

在Apache Flink官网有专门描述三大抽象技术场景,它们是:Stream Analytics,Stream Pipelines,Event-Driven Application。这三大抽象技术场景是我们下面展开的所有业务场景的基础,了解了这三大抽象技术场景,对未来推导其他业务场景和应用案例有很大的帮助。

Stream Analytics

image.png

目前在中国,最多的使用场景是Stream Analytics,它对应的是流处理;如上图左侧Batch Analytics对应的是批处理。Batch Analytics大家应该很熟悉了,它是传统批量分析,也就是批处理,基于有限的数据集构建应用来完成事件的批查询或计算,这个过程和上文介绍的批处理流程是一样的。

右边的Stream Analytics正好相反。如图所示,数据流是持续不断的进入query或application计算系统, 并持续的计算结果,结果再写入外部的存储,然后再通过Live Report输出给用户。

以上是批处理和流处理在Analytics这个场景下的延伸介绍,它们的原理式完全一样的。

image.png

Stream Analytics的核心优势是它规避了批处理周期性数据导入和计算的高延迟过程。相对于批处理,流处理更快更有效率。

Flink 如何支持数据分析类应用

Flink 最大的特点是它内置了一个符合ANSI标准的SQL接口,可以将批量和流式的语义统一起来。无论是在记录事件的静态数据集上,还是实时事件流上,相同SQL查询都会得到一致的结果。这套系统是阿里云贡献给整个社区的,也是从2015年开始就承接了每年双11实时大屏的工作。历经考验,它是一套非常成熟稳定的系统。

Flink内置的符合ANSI标准的SQL接口,成功地把流式处理的技术平民化,赋能给大量的BI工程师或开发人员。他们只需会写SQLC口或稍微通晓一点 Flink 的流处理语言,就能够做相应的开发。 Flink 所支持的数据分析类应用包括:实时数仓,实时数据中台和实时BI。

Stream Pipelines

image.png

如上图,左边是批处理Periodic ETL,右边是实时处理Data Pipeline。从整张图的数据管道来看,流处理相对于批处理来讲,更具有流动性,也就是数据的链路更可以实现实时化。

image.png

如上图,对于实时的数据管道,最大的优势是,能够明显降低将数据移动到目的端的延迟,也能够持续消费和发送数据,因此用途更广,支持用例更多。

Flink 如何更好的支持数据管道应用呢? 很多常见的数据转换和增强操作可以利用 Flink 的SQL接口(或Table API)及用户自定义的函数解决。如果数据管道有更高级别的需求,可以选择更通用的DataStream API来实现。

Flink 为多种数据存储系统内置了连接器,如Kafka、Kinesis、Elasticsearch、JDBC数据库等系统。它还提供了文件系统的连续型数据源(Source)及数据汇端(Sink),可用来监控目录变化和以时间分区的方式写入文件。

Stream Pipeline的应用场景有,实时数据清洗、实时搜索构建和实时告警。

Event Driven Application

image.png

希望将 Flink打造成流处理界的翘楚,希望达到更加极致的实时化,也就是提供一些更加定制化或个性化的数据处理。达成这样的效果需要围绕Application做到快速的读取和写入等。从坐标来看,希望把 Flink推向另外一个对处理时间要求更极致化的Event-Driven的Application。所以Event-Driven Application满足的是对更极致流的场景需求。

image.png

事件驱动型应用的优势是,无需查询远程数据库,本地数据访问使得它具有更高的吞吐和更低的延迟。而由于定期向远程持久化存储的CheckPoint工作可以异步、增量式完成,因此对于正常事件处理的影响甚微。

事件驱动型应用的优势不仅限于本地数据访问,传统分层架构下,通常多个应用会共享同一个数据库,因而任何对数据库自身的更改都需要谨慎协调。而事件驱动型应用,由于只需考虑自身数据,因此在更改数据表示或服务扩容时,所需的协调工作将大大减少。

事件型应用案例包括,反欺诈、异常检测和复杂规则告警,或是其他比较复杂的非二维关系代数模型分析类的应用。

3、应用场景

基于第二部分的技术场景,在上面做叠加和组合,就是以下几个应用场景的介绍。

image.png

实时数仓

实时数仓是在当下比较火、综合了Stream Analytics和Pipeline最终形成了实时数仓。它与传统数仓最大的区别是,它能够把前方的业务数据实时进行清洗、汇聚、加工,最后写入实时服务这一层。实时数仓最核心的是把业务的整个链路实时化了,这就极大的满足了一些需要实时看数据等业务需求。

实时风控

image.png

实时风控在很多有资损、监察、安全监控等需求的行业应用场景很多。在互联网时代,对于大量的用户访问、数据请求和业务的需求,造就了实时风控系统架构的极致化应用。在互联网初期,大家对时效性没有那么高的要求,很多离线风控系统就可以满足需求,但是现在实时化需求越来越大了。

借助实时风控,当用户在做一些操作的时候,规则引擎在获取数据后会做规则判断,然后反馈结果用户的操作是否合法。

实时机器学习

image.png

实时机器学习是一个更宽泛的概念,传统静态的机器学习主要侧重于静态的模型和历史数据进行训练并提供预测。很多时候用户的短期行为,对模型有修正作用,或者说是对业务判断有预测作用。对系统来说,需要采集用户最近的行为并进行特征工程,然后给到实时机器学习系统进行机器学习。如果动态地实施新规则,或是推出新广告,就会有很大的参考价值。

4、行业案例

以上的业务应用案例是不带行业属性的,那么这一部分将结合一些业务场景来看各个行业的案例。主要围绕每个案例产生的背景、需要使用实时计算的痛点、使用实时计算后解决的问题或产生的价值来展开。

金融行业应用

实时计算在金融行业应用比较多是因为金融行业正在面临数据化的转型。转型和变化表现在,从传统到线上,由传统向云上发展,由人决策向机器决策转换等等。这样会带来几个比较大的变化:

image.png

第一是它的业务会越来越复杂,以前只有线下业务,现在有了更多不同类型的业务,比如线上业务,终端业务等等;而且服务链条也越来越长,业务的变化也越来越快。第二是数据需要实行一些决策。以前线下业务在柜台,是点对点的业务沟通和服务,对时效性要求不高。但是新增的线上业务或终端业务,就完全需要一个实时数据监控和实时化的决策,对系统实时化需求更高了。这种实时决策的需求同时对数据质量也会越来越高,这样才能避免决策的失误。

第三是传统风控向实时风控的转型。在金融体系中,像信用违约、账户安全、贷款记账等等,以前的线下业务是靠很多人的参与完成决策的,现在全部数字化后,系统的实时风控就能解决。所以实时计算可以实现对系统整个链路数据的实时采集、实时计算和实时实施,最终实时反馈到业务线上。

在线教育行业应用

由于今年疫情的关系,在线教育行业非常火爆,推动了传统教育向在线教育的转型。在线教育行业面临着很大的实时自动化的需求,因为第一是数据量大,用户量暴增造成数据的暴增;第二是延迟,很多推荐场景或是运营场景,对实时化有强烈的诉求。传统教育的报表是以离线时效性给给到老板查阅分析,但随着行业的数据化转型,数据开始产生价值,实时数据能够为一线运营人员提供决策的依据。

image.png

第三是复杂,在线教育行业因疫情而爆发增长,属于比较新的行业,那么他们的业务在快速发展的同时,一些BI场景也是处于快速变化中的,而且也比较复杂,因此急需一套完整的实时解决方案,帮助他们完成业务的数据的实时化和AI化的转型。这就需要用到阿里实时计算 Flink 来解决了,它能帮助客户快速使用 Flink SQL
解决业务问题。

内容资讯行业应用

内容资讯行业本身是数据密集型行业,而且已经实现个性化推荐,例如今日头条、抖音等平台。这种个性化的推荐需要大量的数据做实时决策。所以当一个公司,数据量突然猛增,业务发展迅猛,那么就需要实时计算解决方案。

image.png

另外,如果业务形态比较复杂也需要实时计算的帮助。有一些资讯平台,不仅有新闻内容,还有UGC、短视频、直播等内容,各种形态千差万别。这就对实时化计算的诉求很强了。第三就是个性化推荐的实现,更是需要实时化计算来助力。它能够实时的把在线业务系统、用户行为等,实现实时抓取并计算,最终服务用户产生个性化推荐。

电商行业应用

实时计算 Flink在阿里首先落地到了电商上,所以应用到电商行业的实时计算应用场景也很多。首先就是上文提到的每年双11的实时巨屏;双11期间淘宝天猫卖家对渠道出货情况的实时了解,广告投放的实时动态等等,以保证能在双11仅仅24小时的窗口期,及时调整销售策略和广告策略,创造最大价值。

image.png

广告行业应用

广告行业从诞生之初,都是一个时效性要求非常高的行业。对广告来说大部分的场景或核心场景都对实时化的要求就比较高。广告数据的真实性对企业来讲是非常重要的,那么能够实时地将因广告产生的用户行为数据、索引数据、广告链接点击和检测等等反馈到系统,借助在线反作弊来反馈真实的流量数据,对企业来讲是有价值的。

image.png

实时计算 Flink 可以极大减少业务开发人员和架构人员在面临实时计算的各种各样不确定性情况时,做到非常稳定地实现广告业务并保证企业的广告收益。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1412 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
14天前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
316 2
探索Flink动态CEP:杭州银行的实战案例
|
7天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
45 14
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
173 56
|
7天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
28天前
|
流计算 开发者
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
|
2月前
|
运维 数据挖掘 网络安全
场景实践 | 基于Flink+Hologres搭建GitHub实时数据分析
基于Flink和Hologres构建的实时数仓方案在数据开发运维体验、成本与收益等方面均表现出色。同时,该产品还具有与其他产品联动组合的可能性,能够为企业提供更全面、更智能的数据处理和分析解决方案。
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
消息中间件 监控 数据可视化
实时计算Flink场景实践和核心功能体验
本文详细评测了阿里云实时计算Flink版,从产品引导、文档帮助、功能满足度等方面进行了全面分析。产品界面设计友好,文档丰富实用,数据开发和运维体验优秀,具备出色的实时性和动态扩展性。同时,提出了针对业务场景的改进建议,包括功能定制化增强、高级分析功能拓展及可视化功能提升。文章还探讨了产品与阿里云内部产品及第三方工具的联动潜力,展示了其在多云架构和跨平台应用中的广阔前景。
117 9
|
3月前
|
运维 数据可视化 数据处理
实时计算Flink场景实践和核心功能体验 评测
实时计算Flink场景实践和核心功能体验 评测
83 5

相关产品

  • 实时计算 Flink版