非容器应用与K8s工作负载的服务网格化实践-6 基于ASM的VM应用动态落迁实践

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 在完成了POD和VM之间互访验证后,本篇将进入VM中,重点关注两个常用的流量管理能力:- 应用通过标签进行分组- 每个分组的多个副本可以动态落组和迁出

在完成了POD和VM之间互访验证后,本篇将进入VM中,重点关注两个常用的流量管理能力:

  • 应用通过标签进行分组
  • 每个分组的多个副本可以动态落组和迁出

本篇示例的拓扑如下图所示。ack中部署上游服务hello1,请求下游服务hello2。在4个ecs节点上,各部署了一个hello2应用,其中两个为en版本,与hello1之间的通信使用蓝线表示;另外两个为fr版本,与hello1之间的通信使用绿线表示。

6-1-workload-blue-green.png

1 搭建实验环境

部署hello1 POD

alias k="kubectl --kubeconfig $USER_CONFIG"
k apply -f yaml/hello1-deploy.yaml

部署hello2 app

在 vm1/vm2两个ecs节点上启动如下docker container,作为group1

sh sh/ssh1.sh

docker run \
--rm \
--network host \
--name http_v1 \
registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v1:1.0.1

在 vm3/vm4两个ecs节点上启动如下docker container,作为group2

sh sh/ssh3.sh

docker run \
--rm \
--network host \
--name http_v2 \
registry.cn-beijing.aliyuncs.com/asm_repo/http_springboot_v2:1.0.1

部署hello2 WorkloadEntry

MESH_ID=$(head -n 1 "$MESHID_CONFIG")
aliyun servicemesh AddVmAppToMesh \
  --ServiceMeshId "$MESH_ID" \
  --Namespace vm-blue-green \
  --ServiceName hello2-svc \
  --Ips "$VM_PRI_1","$VM_PRI_2","$VM_PRI_3","$VM_PRI_4" \
  --Ports http:8001 \
  --Labels app=http-workload
echo "done"

为4个WorkloadEntry增加version标签,v1/v2的设置为v1,v3/v4的设置为v2

spec:
  address: 192.168.0.170
  labels:
    app: http-workload
    version: v1

2 蓝绿部署验证

hello2 VirtualService

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
  namespace: hello-grouping
  name: hello2-vs
spec:
  hosts:
    - hello2-svc
  http:
    - name: http-route
      match:
        - uri:
            prefix: /hello
      route:
        - destination:
            host: hello2-svc
            subset: v1
          weight: 50
        - destination:
            host: hello2-svc
            subset: v2
          weight: 50

hello2 DestinationRule

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  namespace: hello-grouping
  name: hello2-dr
spec:
  host: hello2-svc
  subsets:
    - name: v1
      labels:
        version: v1
      trafficPolicy:
        loadBalancer:
          simple: ROUND_ROBIN
    - name: v2
      labels:
        version: v2
      trafficPolicy:
        loadBalancer:
          simple: ROUND_ROBIN

轮询验证

hello1_pod=$(k get pod -l app=hello1-deploy -n hello-grouping -o jsonpath={.items..metadata.name})

verify_in_loop() {
  for i in {1..8}; do
    echo ">$i test hello2-svc.hello-grouping.svc.cluster.local"
    resp=$(k exec "$hello1_pod" -c hello-v1-deploy -n hello-grouping -- \
      curl -s hello2-svc.hello-grouping.svc.cluster.local:8001/hello/eric)
    if [[ "no healthy upstream" == $resp ]]; then
      echo "stop, no healthy upstream."
      exit
    fi
    echo "$resp"
  done
}

m get workloadentry -n hello-grouping -o wide
verify_in_loop

预期的结果如下所示。流量转移首先会按照group间(v1v2)的比例配置进行,进入group后会按负载均衡策略(ROUND_ROBIN)进行路由。

...
>5 test hello2-svc.hello-grouping.svc.cluster.local
Hello eric(192.168.0.171)
>6 test hello2-svc.hello-grouping.svc.cluster.local
Hello eric(192.168.0.170)
>7 test hello2-svc.hello-grouping.svc.cluster.local
Bonjour eric(192.168.0.172)
>8 test hello2-svc.hello-grouping.svc.cluster.local
Bonjour eric(192.168.0.198)

3 应用落迁验证

当前group1和group2各有2个实例,我们按如下顺序动态删除和增加workloadentry并验证流量:

  • 将vm4从group2中迁出,使group1和group2节点比例为2:1
  • 将vm2从group1中迁出,使group1和group2节点比例为1:1
  • 将vm4落入group2,使group1和group2节点比例为1:2
  • 将vm2落入group1,使group1和group2节点比例为2:2
hello1_pod=$(k get pod -l app=hello1-deploy -n hello-grouping -o jsonpath={.items..metadata.name})
echo "1 Test blue-green 2:1"
m delete workloadentry mesh-expansion-hello2-svc-4 -n hello-grouping
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "2 Test blue-green 1:1"
m delete workloadentry mesh-expansion-hello2-svc-2 -n hello-grouping
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "3 Test blue-green 1:2"
m apply -f yaml/wl4.yaml
m get workloadentry -n hello-grouping -o wide
verify_in_loop

echo "4 Test blue-green 2:2"
m apply -f yaml/wl2.yaml
m get workloadentry -n hello-grouping -o wide
verify_in_loop
verify_in_loop() {
  echo >test_traffic_result
  for i in {1..100}; do
    resp=$(k exec "$hello1_pod" -c hello-v1-deploy -n hello-grouping -- curl -s hello2-svc.hello-grouping.svc.cluster.local:8001/hello/eric)
    if [[ "no healthy upstream" == $resp ]]; then
      echo "stop, no healthy upstream."
      rm -f test_traffic_result
      exit
    fi
    echo "$resp" >>test_traffic_result
  done
  echo "result:"
  sort test_traffic_result | grep -v "^[[:space:]]*$" | uniq -c | sort -nrk1
  rm -f test_traffic_result
}

期待的结果如下。

1 Test blue-green 2:1
workloadentry.networking.istio.io "mesh-expansion-hello2-svc-4" deleted
NAME                          AGE
mesh-expansion-hello2-svc-1   28m
mesh-expansion-hello2-svc-2   64s
mesh-expansion-hello2-svc-3   28m
result:
  56 Bonjour eric(192.168.0.172)
  22 Hello eric(192.168.0.171)
  22 Hello eric(192.168.0.170)
2 Test blue-green 1:1
workloadentry.networking.istio.io "mesh-expansion-hello2-svc-2" deleted
NAME                          AGE
mesh-expansion-hello2-svc-1   28m
mesh-expansion-hello2-svc-3   28m
result:
  51 Bonjour eric(192.168.0.172)
  49 Hello eric(192.168.0.170)
3 Test blue-green 1:2
workloadentry.networking.istio.io/mesh-expansion-hello2-svc-4 created
NAME                          AGE
mesh-expansion-hello2-svc-1   29m
mesh-expansion-hello2-svc-3   29m
mesh-expansion-hello2-svc-4   0s
result:
  53 Hello eric(192.168.0.170)
  24 Bonjour eric(192.168.0.198)
  23 Bonjour eric(192.168.0.172)
4 Test blue-green 2:2
workloadentry.networking.istio.io/mesh-expansion-hello2-svc-2 created
NAME                          AGE
mesh-expansion-hello2-svc-1   29m
mesh-expansion-hello2-svc-2   1s
mesh-expansion-hello2-svc-3   29m
mesh-expansion-hello2-svc-4   37s
result:
  26 Hello eric(192.168.0.171)
  26 Hello eric(192.168.0.170)
  24 Bonjour eric(192.168.0.198)
  24 Bonjour eric(192.168.0.172)

到此,VM应用动态落迁实践验证完毕。通过本篇实验,我们可以掌握如何将VM应用进行分组,并根据实际情况,通过workload entry进行动态落组和迁出。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1天前
|
Kubernetes 持续交付 开发工具
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
阿里云协同万兴科技落地ACK One GitOps方案,全球多机房应用自动化发布,效率提升50%
|
29天前
|
存储 监控 对象存储
ACK 容器监控存储全面更新:让您的应用运行更稳定、更透明
针对本地存储和 PVC 这两种容器存储使用方式,我们对 ACK 的容器存储监控功能进行了全新升级。此次更新完善了对集群中不同存储类型的监控能力,不仅对之前已有的监控大盘进行了优化,还针对不同的云存储类型,上线了全新的监控大盘,确保用户能够更好地理解和管理容器业务应用的存储资源。
117 21
|
1月前
|
存储 监控 对象存储
ACK容器监控存储全面更新:让您的应用运行更稳定、更透明
介绍升级之后的ACK容器监控体系,包括各大盘界面展示和概要介绍。
|
1月前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
209 11
|
1月前
|
缓存 Kubernetes Docker
GitLab Runner 全面解析:Kubernetes 环境下的应用
GitLab Runner 是 GitLab CI/CD 的核心组件,负责执行由 `.gitlab-ci.yml` 定义的任务。它支持多种执行方式(如 Shell、Docker、Kubernetes),可在不同环境中运行作业。本文详细介绍了 GitLab Runner 的基本概念、功能特点及使用方法,重点探讨了流水线缓存(以 Python 项目为例)和构建镜像的应用,特别是在 Kubernetes 环境中的配置与优化。通过合理配置缓存和镜像构建,能够显著提升 CI/CD 流水线的效率和可靠性,助力开发团队实现持续集成与交付的目标。
|
2月前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
2月前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
人工智能 Kubernetes 安全
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
赋能加速AI应用交付,F5 BIG-IP Next for Kubernetes方案解读
82 13
|
3月前
|
Kubernetes 监控 安全
容器化技术:Docker与Kubernetes的实战应用
容器化技术:Docker与Kubernetes的实战应用
|
3月前
|
Java Docker 微服务
利用Docker容器化部署Spring Boot应用
利用Docker容器化部署Spring Boot应用
72 0

相关产品

  • 容器服务Kubernetes版