开发者社区> 德哥> 正文

PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem

简介: PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem
+关注继续查看

背景

夜谈PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem。

http://www.postgres.cn/v2/news/viewone/1/398

https://rhaas.blogspot.com/2019/01/how-much-maintenanceworkmem-do-i-need.html

9.4以前的版本,垃圾回收相关的内存参数maintenance_work_mem,9.4以及以后的版本为autovacuum_work_mem,如果没有设置autovacuum_work_mem,则使用maintenance_work_mem的设置。

这个参数设置的是内存大小有什么用呢?

这部分内存被用于记录垃圾tupleid,vacuum进程在进行表扫描时,当扫描到的垃圾记录ID占满了整个内存(autovacuum_work_mem或maintenance_work_mem),那么会停止扫描表,开始INDEX的扫描。

扫描INDEX时,清理索引中的哪些tuple,实际上是从刚才内存中记录的这些tupleid来进行匹配。

当所有索引都扫描并清理了一遍后,继续从刚才的位点开始扫描表。

过程如下:

1、palloc autovacuum_work_mem memory  
  
2、scan table,   
  
3、dead tuple's tupleid write to autovacuum_work_mem  
  
4、when autovacuum_work_mem full (with dead tuples can vacuum)  
  
5、record table scan offset.  
  
6、scan indexs  
  
7、vacuum index's dead tuple (these: index item's ctid in autovacuum_work_mem)  
  
8、scan indexs end  
  
9、continue scan table with prev's offset  
  
...  

显然,如果垃圾回收时autovacuum_work_mem太小,INDEX会被多次扫描,浪费资源,时间。

palloc autovacuum_work_mem memory 这部分内存是使用时分配,并不是直接全部使用掉maintenance_work_mem或autovacuum_work_mem设置的内存,PG代码中做了优化限制:

对于小表,可能申请少量内存,算法请参考如下代码(对于小表,申请的内存数会是保障可记录下整表的tupleid的内存数(当maintenance_work_mem或autovacuum_work_mem设置的内存大于这个值时))。

我已经在如下代码中进行了标注:

/*  
 * MaxHeapTuplesPerPage is an upper bound on the number of tuples that can  
 * fit on one heap page.  (Note that indexes could have more, because they  
 * use a smaller tuple header.)  We arrive at the divisor because each tuple  
 * must be maxaligned, and it must have an associated item pointer.  
 *  
 * Note: with HOT, there could theoretically be more line pointers (not actual  
 * tuples) than this on a heap page.  However we constrain the number of line  
 * pointers to this anyway, to avoid excessive line-pointer bloat and not  
 * require increases in the size of work arrays.  
 */  
#define MaxHeapTuplesPerPage    \  
        ((int) ((BLCKSZ - SizeOfPageHeaderData) / \  
                        (MAXALIGN(SizeofHeapTupleHeader) + sizeof(ItemIdData))))  
  
  
/*  
 * Guesstimation of number of dead tuples per page.  This is used to  
 * provide an upper limit to memory allocated when vacuuming small  
 * tables.  
 */  
#define LAZY_ALLOC_TUPLES               MaxHeapTuplesPerPage  
  
  
/*  
 * lazy_space_alloc - space allocation decisions for lazy vacuum  
 *  
 * See the comments at the head of this file for rationale.  
 */  
static void  
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)  
{  
        long            maxtuples;  
        int                     vac_work_mem = IsAutoVacuumWorkerProcess() &&  
        autovacuum_work_mem != -1 ?  
        autovacuum_work_mem : maintenance_work_mem;  
  
        if (vacrelstats->hasindex)  
        {  
                maxtuples = (vac_work_mem * 1024L) / sizeof(ItemPointerData);  
                maxtuples = Min(maxtuples, INT_MAX);  
                maxtuples = Min(maxtuples, MaxAllocSize / sizeof(ItemPointerData));  
  
                /* curious coding here to ensure the multiplication can't overflow */  
  
                这里保证了maintenance_work_mem或autovacuum_work_mem不会直接被使用光,  
                如果是小表,会palloc少量memory。  
  
                if ((BlockNumber) (maxtuples / LAZY_ALLOC_TUPLES) > relblocks)  
                        maxtuples = relblocks * LAZY_ALLOC_TUPLES;  
  
                /* stay sane if small maintenance_work_mem */  
                maxtuples = Max(maxtuples, MaxHeapTuplesPerPage);  
        }  
        else  
        {  
                maxtuples = MaxHeapTuplesPerPage;  
        }  
  
        vacrelstats->num_dead_tuples = 0;  
        vacrelstats->max_dead_tuples = (int) maxtuples;  
        vacrelstats->dead_tuples = (ItemPointer)  
                palloc(maxtuples * sizeof(ItemPointerData));  
}  

maintenance_work_mem这个内存还有一个用途,创建索引时,maintenance_work_mem控制系统在构建索引时将使用的最大内存量。为了构建一个B树索引,必须对输入的数据进行排序,如果要排序的数据在maintenance_work_mem设定的内存中放置不下,它将会溢出到磁盘中。

例子

如何计算适合的内存大小

postgres=# show autovacuum_work_mem ;  
 autovacuum_work_mem   
---------------------  
 1GB  
(1 row)  
  
postgres=# show maintenance_work_mem ;  
 maintenance_work_mem   
----------------------  
 1GB  
(1 row)  

也就是说,最多有1GB的内存,用于记录一次vacuum时,一次性可存储的垃圾tuple的tupleid。

tupleid为6字节长度。

  
/*  
 * ItemPointer:  
 *  
 * This is a pointer to an item within a disk page of a known file  
 * (for example, a cross-link from an index to its parent table).  
 * blkid tells us which block, posid tells us which entry in the linp  
 * (ItemIdData) array we want.  
 *  
 * Note: because there is an item pointer in each tuple header and index  
 * tuple header on disk, it's very important not to waste space with  
 * structure padding bytes.  The struct is designed to be six bytes long  
 * (it contains three int16 fields) but a few compilers will pad it to  
 * eight bytes unless coerced.  We apply appropriate persuasion where  
 * possible.  If your compiler can't be made to play along, you'll waste  
 * lots of space.  
 */  
typedef struct ItemPointerData  
{  
        BlockIdData ip_blkid;  
        OffsetNumber ip_posid;  
}  

1G可存储1.7亿条dead tuple的tupleid。

postgres=# select 1024*1024*1024/6;  
 ?column?    
-----------  
 178956970  
(1 row)  

而自动垃圾回收是在什么条件下触发的呢?

src/backend/postmaster/autovacuum.c

 * A table needs to be vacuumed if the number of dead tuples exceeds a  
 * threshold.  This threshold is calculated as  
 *  
 * threshold = vac_base_thresh + vac_scale_factor * reltuples  
  
vac_base_thresh:   autovacuum_vacuum_threshold    
  
vac_scale_factor:  autovacuum_vacuum_scale_factor    
  
  
postgres=# show autovacuum_vacuum_threshold ;  
 autovacuum_vacuum_threshold   
-----------------------------  
 50  
(1 row)  
  
postgres=# show autovacuum_vacuum_scale_factor ;  
 autovacuum_vacuum_scale_factor   
--------------------------------  
 0.2  
(1 row)  

以上设置,表示当垃圾记录数达到50+表大小乘以0.2时,会触发垃圾回收。

可以看成,垃圾记录约等于表大小的20%,触发垃圾回收。

那么1G能存下多大表的垃圾呢?约8.9亿条记录的表。

postgres=# select 1024*1024*1024/6/0.2;  
      ?column?        
--------------------  
 894784850  
(1 row)  

压力测试例子

postgres=# show log_autovacuum_min_duration ;  
 log_autovacuum_min_duration   
-----------------------------  
 0  
(1 row)  
create table test(id int primary key, c1 int, c2 int, c3 int);  
create index idx_test_1 on test (c1);  
create index idx_test_2 on test (c2);  
create index idx_test_3 on test (c3);  
vi test.sql  
\set id random(1,10000000)  
insert into test values (:id,random()*100, random()*100,random()*100) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2,c3=excluded.c3;  
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 32 -j 32 -T 1200  

垃圾回收记录

2019-02-26 22:51:50.323 CST,,,35632,,5c755284.8b30,1,,2019-02-26 22:51:48 CST,36/22,0,LOG,00000,"automatic vacuum of table ""postgres.public.test"": index scans: 1  
pages: 0 removed, 6312 remain, 2 skipped due to pins, 0 skipped frozen  
tuples: 4631 removed, 1158251 remain, 1523 are dead but not yet removable, oldest xmin: 1262982800  
buffer usage: 39523 hits, 1 misses, 1 dirtied  
avg read rate: 0.004 MB/s, avg write rate: 0.004 MB/s  
system usage: CPU: user: 1.66 s, system: 0.10 s, elapsed: 1.86 s",,,,,,,,"lazy_vacuum_rel, vacuumlazy.c:407",""  
2019-02-26 22:51:50.566 CST,,,35632,,5c755284.8b30,2,,2019-02-26 22:51:48 CST,36/23,1263417553,LOG,00000,"automatic analyze of table ""postgres.public.test"" system usage: CPU: user: 0.16 s, system: 0.04 s, elapsed: 0.24 s",,,,,,,,"do_analyze_rel, analyze.c:722",""  

index scans:1 表示垃圾回收的表有索引,并且索引只扫描了一次。

说明autovacuum_work_mem足够大,没有出现vacuum时装不下垃圾dead tuple tupleid的情况。

小结

建议:

1、log_autovacuum_min_duration=0,表示记录所有autovacuum的统计信息。

2、autovacuum_vacuum_scale_factor=0.01,表示1%的垃圾时,触发自动垃圾回收。

3、autovacuum_work_mem,视情况定,确保不出现垃圾回收时多次INDEX SCAN.

4、如果发现垃圾回收统计信息中出现了index scans: 超过1的情况,说明:

4.1、需要增加autovacuum_work_mem,增加多少呢?增加到当前autovacuum_work_mem乘以index scans即可。

4.2、或者调低autovacuum_vacuum_scale_factor到当前值除以index scans即可,让autovacuum尽可能早的进行垃圾回收。

参考

http://www.postgres.cn/v2/news/viewone/1/398

https://rhaas.blogspot.com/2019/01/how-much-maintenanceworkmem-do-i-need.html

《PostgreSQL 11 参数模板 - 珍藏级》

PostgreSQL 许愿链接

您的愿望将传达给PG kernel hacker、数据库厂商等, 帮助提高数据库产品质量和功能, 说不定下一个PG版本就有您提出的功能点. 针对非常好的提议,奖励限量版PG文化衫、纪念品、贴纸、PG热门书籍等,奖品丰富,快来许愿。开不开森.

9.9元购买3个月阿里云RDS PostgreSQL实例

PostgreSQL 解决方案集合

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem
标签 PostgreSQL , 垃圾回收 , 索引扫描 , 内存 背景 夜谈PostgreSQL 垃圾回收参数优化之 - maintenance_work_mem , autovacuum_work_mem。 http://www.postgres.cn/v2/news/viewone/1/398 https://rhaas.blogspot.com/2019/01/how-much
2171 0
PostgreSQL物理"备库"的哪些操作或配置,可能影响"主库"的性能、垃圾回收、IO波动
标签 PostgreSQL , 物理复制 , 垃圾回收 , vacuum_defer_cleanup_age , hot_standby_feedback , max_standby_archive_delay , max_standby_streaming_delay 背景 PostgreSQL 物理备库的哪些配置,或者哪些操作,可能影响到主库呢? 首先,简单介绍一下PostgreSQL的物理备库,物理备库就是基于PostgreSQL WAL流式复制,实时恢复的备库。
3754 0
PostgreSQL 老湿机图解平安科技遇到的垃圾回收"坑"
背景 从海安那里反馈的一个问题,是平安科技在使用PostgreSQL的过程中,遇到的一个有些"不可思议"的问题。 一张经常被更新的表,通过主键查询这张表的记录时,发现需要扫描异常多的数据块。 其实原因有2。 .1. 长事务有关,我在很多文章都提到过,PG在垃圾回收时,只判断垃圾版
6663 0
阿里云数据库专家于巍荣获PostgreSQL中国技术大会“最具价值专家 MVP”奖
2023年3月3日,在由PostgreSQL中文社区主办的“第十二届PostgreSQL中国技术大会”上,阿里云数据库开源首席架构师于巍荣获“中国 PostgreSQL 最具价值专家 MVP”奖项。
82 0
喜讯!阿里云数据库PolarDB荣获第12届PostgreSQL中国技术大会“开源数据库杰出贡献奖”
2023年3月3日,由PostgreSQL中文社区主办的“第十二届PostgreSQL中国技术大会”在杭州隆重开幕。本次大会以“突破·进化·共赢 —— 安全可靠,共建与机遇”为主题,邀请了来自国内外的行业专家、企业家代表等,共见创新成果、共论国产数据库发展机遇。会上,PolarDB for PostgreSQL(简称PolarDB-PG )凭借在数据库开源领域的深耕布局和产品技术实力,荣获“开源数据库杰出贡献奖”。
103 0
《RDS数据库入门一本通》电子版地址
本书体系完整,理论充实,内容由浅入深,循序渐进,更配有详细的实例解说,为初学者提供一个完整、严密的思维框架,零基础的你也可轻松掌握RDS数据库的美妙节奏。
19 0
云原生数据库-Amazon RDS
云原生数据库-Amazon RDS
48 0
阿里云rds数据库导出到windows本地数据库中
在搜索框中输入MySQL,然后选中RDS版,进入控制台前首先要关闭数据库连接,否则找不到实例。
29 0
+关注
德哥
公益是一辈子的事, I am digoal, just do it.
文章
问答
视频
来源圈子
更多
让用户数据永远在线,让数据无缝的自由流动
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
云数据库RDS MySQL从入门到高阶
立即下载
PolarDB for PostgreSQL 源码与应用实战
立即下载
PolarDB for PostgreSQL 开源必读手册
立即下载