“业务指标”衡量电商搜索引擎的优劣

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
OpenSearch LLM智能问答版免费试用套餐,存储1GB首月+计算资源100CU
简介: 在电商行业中,无论是2B还是2C,最终的业务目的就是交易成单,众所周知搜索服务旨在让消费者能够更快的定位到自己想要的产品,据统计像淘宝这类综合型电商搜索转化交易占整个交易结果的40%以上,垂直类电商的搜索转化更是占整个交易结果的60%以上,所以搜索在电商中的重要性不言而喻,越是拥有海量sku的电商网站,就越依靠搜索,同时对搜索商品的能力要求也就越高。

一般电商搜索的核心是搜索精度和搜索广度,精度就是搜索的精确性,广度就是搜索结果的范围,其关键结果肯定是“为用户找到想要的商品”,但过于追求搜索的精确度就会导致出现搜索的结果比较少或结果为0的情况,用户搜不到商品势必会引发流失,因此在搜索服务里面还可以做的就是给用户提供一些相关性搜索结果。那么搜索做的好不好,其实就是在搜索精度和搜索广度二者之间做一个比较好的平衡点。那如何评定我们的搜索是否可以满足业务需求那?又可以通过哪些场景的优化实践提升我们搜索的整体性能那?


1. 驱动搜索业务价值提升的原因

先和大家回顾一下你是不是也是遇到以下几个情况后,开始思考搜索到底做的怎么样,有什么方法可以评估那?

1.1随机性发现的Bad case
领导或运营人员工作中发现搜索某商品时,无结果率较高,搜索排序体验不好的情况,认为不能完全满足实际用户搜索需求,直接影响整体业务发展,建议开发同学提升搜索效果和搜索体验;

1.2 KPI考核
KPI考核驱动优化提升搜索业务,比如要求CTR提升10%;

1.3.业务方诉求
合作某品牌旗舰店要求优化搜索排序效果;
那接下来我们刨析一下,从哪些方法和角度去评估搜索质量、体验与业务价值

2.业务指标衡量搜索体验与价值

2.1 完整体系化的衡量方法
{40B47192-FFC8-4D96-95A0-4E120C684D2D}_20200729191507.jpg
阿里云开放搜索经过千锤百炼的实践与总结形成了一套体系化的、完整的、持续的评估方法。通过周期性的监控与评估,制定相应的迭代与专项跟进,做A/B Test或灰度后才去放全量,然后再持续进行监控。

2.2核心业务指标
【指标维度】:流量指标、点击类指标、用户分析类指标、Query分析类指标、成交指标。
指标.png
【核心指标】
"搜索PV":指访问搜索页面的次数;
“搜索UV”:访问过搜索结果页的用户数;
“无结果率”:空结果PV/搜索PV,无结果率越低,代表客户搜索需求解决情况越好;
“TOP5 PV—CTR”:指该query search结果中,排在前五位的item有被点击的搜索PV/该query搜索PV该指标能一定程度反应排序效果;
“人均搜索PV”:搜索PV/搜索UV;该指标的含义比较复杂,一方面人均pv大的话可能代表用户对搜索比较感兴趣,但另一方面人均pv大也可能代表搜索召回的结果较差,导致用户无法使用较少的点击找到满足需求的结果;
“有点击搜索PV占比”:有点击搜索PV/搜索PV数;
“PV-CTR”:搜索结果页item点击数/搜索PV数;
“UV-CTR”:点击的uv / 曝光的uv;
“Item-CTR”:搜索结果页item点击数/搜索结果页item总曝光PV数;

通过体系化的业务指标和报表可以清晰反映搜索的质量和用户体验效果,再通过系统的评估服务,找到对应的问题原因和解决方案.

3.搜索技术等级

参考业界对搜索等级的不同定义:
faa125169aa94adbbf4e52670692dce2.png
市面上大部分产品搜索还处L0等级和L1等级的位置。想要实现高效、可持续的高质量搜索价值需要投入大量的人力成本才能达到,这也是很多开源自建用户所面临的问题与挑战。只有一套高效、完整落地的搜索体系才会不断驱动电商业务更好的持续发展。


以上是今天想和大家分享的内容 ,希望能带来一些关于“搜索”新的思路和启发~
预告:接下来几篇内容会通过6个真实的电商搜索场景实践进行刨析,和大家一起聊一聊“如何通过搜索更快更好的提升电商业务价值。”


如果你想与更多开发者们进行交流、了解最前沿的搜索与推荐技术,可以钉钉扫码加入社群~

de4a0a78832849edbd0b7a486148ce2f.png

【开放搜索】新用户活动:阿里云实名认证用户享1个月免费试用~https://www.aliyun.com/product/opensearch

目录
相关文章
|
SQL 运维 搜索推荐
《揭秘,阿里开源自研搜索引擎Havenask的在线检索服务》
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。本文针对性介绍了Havenask的在线检索服务,它具备高可用、高时效、低成本的优势,帮助企业和开发者量身定做适合业务发展的智能搜索服务。
84607 138
|
存储 供应链 前端开发
最近在对接电商供应链,说说开放平台API接口
由于商家的商品、客户、价格、库存、订单等信息都有手动同步和自动同步两种模式,当两种模式同时存在并进行的同时,可能会导致数据比较乱,而且不方便,如:由于库存不足,页面无法进行下单的操作。而此时商家需要进行负卖,那边这个时候需要手动修改库存,但是修改完之后,库存很快会被同步系统传过来的新库存数据给覆盖。 为了解决以上的问题,我们需要根据不同的功能模块分别做一个开关,即针对某个功能设置是否开启自动同步。如刚刚那个例子,如果此时该商品需要临时修改库存并维持一段时间(保证客户有足够的时间下单付款),可以暂时关闭库存同步服务。
|
12月前
|
机器学习/深度学习 存储 自然语言处理
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch(上)
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch(上)
171 0
|
7月前
|
人工智能 自然语言处理 算法
《DeepSeek-V3:动态温度调节算法,开启推理新境界!》
DeepSeek-V3凭借其创新的动态温度调节算法,成为人工智能领域的焦点。该算法通过灵活调整模型输出的随机性(温度),在不同情境下实现推理速度与精度的动态平衡。低温使模型输出稳定准确,适合事实性任务;高温则激发多样性,适用于创意创作。DeepSeek-V3能根据对话进展、任务类型等实时优化温度,提升多轮对话的质量和效率,显著改善智能客服和内容创作的应用体验。这一技术突破为大语言模型的发展注入了新活力,展现了强大的适应性和竞争力。
325 17
|
8月前
|
机器学习/深度学习 数据可视化 算法
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
637 5
YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
|
12月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch(下)
【电商搜索】现代工业级电商搜索技术-Facebook语义搜索技术QueSearch(下)
151 0
|
存储 人工智能 数据处理
Elasticsearch 8 RAG 技术分享
本文介绍了Elasticsearch 8 在RAG场景方面的发展历程、技术演进、未来发展方向和产品能力。
847 8
|
物联网 C# Windows
看看如何使用 C# 代码让 MQTT 进行完美通信
看看如何使用 C# 代码让 MQTT 进行完美通信
1431 0
|
存储 移动开发 自然语言处理
|
搜索推荐 UED 索引
闲鱼技术2022年度白皮书-服务端主题-电商搜索里都有啥?详解闲鱼搜索系统(下)
闲鱼技术2022年度白皮书-服务端主题-电商搜索里都有啥?详解闲鱼搜索系统
491 0