详解迭代器的使用 | 手把手教你入门Python之八十

简介: 迭代器是⽤来帮助我们记录每次迭代访问到的位置,当我们对迭代器使⽤next()函数的时候,迭代器会向我们返回它所记录位置的下⼀个位置的数据。

上一篇:自定义异常 | 手把手教你入门Python之七十九
下一篇:生成器 | 手把手教你入门Python之八十一

本文来自于千锋教育在阿里云开发者社区学习中心上线课程《Python入门2020最新大课》,主讲人姜伟。

迭代器

迭代是访问集合元素的⼀种⽅式。迭代器是⼀个可以记住遍历的位置的对象。迭代器对象从集合的第⼀个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

可迭代对象

我们已经知道可以对list、tuple、str等类型的数据使⽤for...in...的循环语法从其中依次拿到数据进⾏使⽤,我们把这样的过程称为遍历,也叫迭代

但是,是否所有的数据类型都可以放到for...in...的语句中,然后让for...in...每次从中取出⼀条数据供我们使⽤,即供我们迭代吗?

>>> for i in 100:
...    print(i)
...
Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
TypeError: 'int' object is not iterable
>>>
# int整型不是iterable,即int整型不是可以迭代的

我们把可以通过for...in...这类语句迭代读取⼀条数据供我们使⽤的对象称之为可迭代对象(Iterable)。

如何判断⼀个对象是否可以迭代

可以使⽤ isinstance() 判断⼀个对象是否是 Iterable 对象:

In [50]: from collections import Iterable

In [51]: isinstance([], Iterable)
Out[51]: True

In [52]: isinstance({}, Iterable)
Out[52]: True

In [53]: isinstance('abc', Iterable)
Out[53]: True

In [54]: isinstance(mylist, Iterable)
Out[54]: False

In [55]: isinstance(100, Iterable)
Out[55]: False

可迭代对象的本质

我们分析对可迭代对象进⾏迭代使⽤的过程,发现每迭代⼀次(即在for...in...中每循环⼀次)都会返回对象中的下⼀条数据,⼀直向后读取数据直到迭代了所有数据后结束。那么,在这个过程中就应该有⼀个“⼈”去记录每次访问到了第⼏条数据,以便每次迭代都可以返回下⼀条数据。我们把这个能帮助我们进⾏数据迭代的“⼈”称为迭代器(Iterator)

可迭代对象的本质就是可以向我们提供⼀个这样的中间“⼈”即迭代器帮助我们对其进⾏迭代遍历使⽤。

可迭代对象通过 __iter__ ⽅法向我们提供⼀个迭代器,我们在迭代⼀个可迭代对象的时候,实际上就是先获取该对象提供的⼀个迭代器,然后通过这个迭代器来依次获取对象中的每⼀个数据。

那么也就是说,⼀个具备了 __iter__ ⽅法的对象,就是⼀个可迭代对象。

from collections.abc import Iterable

class Demo(object):
    def __init__(self, n):
        self.n = n
        self.current = 0

    def __iter__(self):
        pass

demo = Demo(10)
print(isinstance(demo, Iterable)) # True

for d in demo: # 重写了 __iter__ ⽅法以后,demo就是⼀个⼀个可迭代对象了,可以放在for...in的后⾯
    print(d)

# 此时再使⽤for...in循环遍历,会提示 TypeError: iter() returned non-iterator of type 'N
oneType'
# 这是因为,⼀个可迭代对象如果想要被for...in循环,它必须要有⼀个迭代器

迭代器Iterator

通过上⾯的分析,我们已经知道,迭代器是⽤来帮助我们记录每次迭代访问到的位置,当我们对迭代器使⽤next()函数的时候,迭代器会向我们返回它所记录位置的下⼀个位置的数据。实际上,在使⽤next()函数的时候,调⽤的就是迭代器对象的 __next__ ⽅法(Python3中是对象的 __next__ ⽅法,Python2中是对象的next()⽅法)。所以,我们要想构造⼀个迭代器,就要实现它的next⽅法。但这还不够,python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现 __iter__ ⽅法,⽽ __iter__ ⽅法要返回⼀个迭代器,迭代器⾃身正是⼀个迭代器,所以迭代器的 __iter__ ⽅法返回⾃身即可。

⼀个实现了iter⽅法和next⽅法的对象,就是迭代器。

class MyIterator(object):
    def __init__(self, n):
        self.n = n
        self.current = 0

    # ⾃定义迭代器需要重写__iter__和__next__⽅法
    def __iter__(self):
        return self

    def __next__(self):
        if self.current < self.n:
            value = self.current
            self.current += 1
            return value
        else:
            raise StopIteration

my_it = MyIterator(10)

for i in my_it:   # 迭代器重写了__iter__⽅法,它本身也是⼀个可迭代对象
    print(i)

如何判断⼀个对象是否是迭代器

调⽤⼀个对象的 __iter__ ⽅法,或者调⽤iter()内置函数,可以获取到⼀个可迭代对象的迭代器。

names = ['hello', 'good', 'yes']
print(names.__iter__()) # 调⽤对象的__iter__()⽅法
print(iter(names)) # 调⽤iter()内置函数

可以使⽤ isinstance() 判断⼀个对象是否是 Iterator 对象:

from collections.abc import Iterator
names = ['hello', 'good', 'yes']
print(isinstance(iter(names), Iterator))

for...in...循环的本质

for item in Iterable 循环的本质就是先通过iter()函数获取可迭代对象Iterable的迭代器,然后对获取到的迭代器不断调⽤next()⽅法来获取下⼀个值并将其赋值给item,当遇到StopIteration的异常后循环结束。

迭代器的应⽤场景

我们发现迭代器最核⼼的功能就是可以通过next()函数的调⽤来返回下⼀个数据值。如果每次返回的数据值不是在⼀个已有的数据集合中读取的,⽽是通过程序按照⼀定的规律计算⽣成的,那么也就意味着可以不⽤再依赖⼀个已有的数据集合,也就是说不⽤再将所有要迭代的数据都⼀次性缓存下来供后续依次读取,这样可以节省⼤量的存储(内存)空间。

举个例⼦,⽐如,数学中有个著名的斐波拉契数列(Fibonacci),数列中第⼀个数为0,第⼆个数为1,其后的每⼀个数都可由前两个数相加得到:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

现在我们想要通过for...in...循环来遍历迭代斐波那契数列中的前n个数。那么这个斐波那契数列我们就可以⽤迭代器来实现,每次迭代都通过数学计算来⽣成下⼀个数。

class FibIterator(object):
    """斐波那契数列迭代器"""
    def __init__(self, n):
        """
        :param n: int, 指明⽣成数列的前n个数
        """
        self.n = n
        # current⽤来保存当前⽣成到数列中的第⼏个数了
        self.current = 0
        # num1⽤来保存前前⼀个数,初始值为数列中的第⼀个数0
        self.num1 = 0
        # num2⽤来保存前⼀个数,初始值为数列中的第⼆个数1
        self.num2 = 1

    def __next__(self):
        """被next()函数调⽤来获取下⼀个数"""
        if self.current < self.n:
            num = self.num1
            self.num1, self.num2 = self.num2, self.num1+self.num2
            self.current += 1
            return num
        else:
            raise StopIteration

    def __iter__(self):
        """迭代器的__iter__返回⾃身即可"""
        return self


if __name__ == '__main__':
    fib = FibIterator(10)
    for num in fib:
        print(num, end=" ")

配套视频

相关文章
|
1天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
1天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
1天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。
|
1月前
|
存储 数据挖掘 数据处理
Python Pandas入门:行与列快速上手与优化技巧
Pandas是Python中强大的数据分析库,广泛应用于数据科学和数据分析领域。本文为初学者介绍Pandas的基本操作,包括安装、创建DataFrame、行与列的操作及优化技巧。通过实例讲解如何选择、添加、删除行与列,并提供链式操作、向量化处理、索引优化等高效使用Pandas的建议,帮助用户在实际工作中更便捷地处理数据。
47 2
|
1月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
41 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈

热门文章

最新文章

推荐镜像

更多