使用DLA分析MaxCompute外部表数据

简介: MaxCompute支持通过外部表关联OSS,进行数据输出。然而,由于MaxCompute外部表的目录结构比较特殊,无法使用MaxCompute以外的工具对OSS上的文件做进一步的分析,限制了外部表的使用场景。因此,DLA最近支持了分析MaxCompute外部表数据文件的功能,借助DLA强大的生态,可以方便地对MaxCompute外部表进行分析,并能够和其他数据源做联合查询。本文通过一个简单的例子介绍如何使用这个功能。

MaxCompute支持通过外部表关联OSS,进行数据输出。然而,由于MaxCompute外部表的目录结构比较特殊,无法使用MaxCompute以外的工具对OSS上的文件做进一步的分析,限制了外部表的使用场景。因此,DLA最近支持了分析MaxCompute外部表数据文件的功能,借助DLA强大的生态,可以方便地对MaxCompute外部表进行分析,并能够和其他数据源做联合查询。
本文通过一个简单的例子介绍如何使用这个功能。

准备工作:创建MaxCompute外部表并写入数据


进入MaxCompute工作空间,新建一个ODPS SQL节点,在其中执行如下语句创建OSS外表:

CREATE EXTERNAL TABLE parquet
(
  a int,
  b int
)
STORED AS PARQUET
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${bucket}/${userPath}/';

关于创建外部表语法的更多信息可参考MaxCompute文档
建表之后,我们可以执行如下语句向其中写入几条测试数据:

insert into parquet values(1,1);
insert into parquet values(2,2);

执行查询,我们可以看到数据已经写入到外表中了:

odps.png

使用DLA分析MaxCompute外部表

首先创建一个OSS Schema:

CREATE SCHEMA dla_oss_db with DBPROPERTIES(
catalog='oss',
location 'oss://${bucket}/${userPath}/'
)

创建表:

CREATE EXTERNAL TABLE odps_parquet (
    `a` int,
    `b` int
)
STORED AS PARQUET
LOCATION 'oss://${bucket}/${userPath}/'
TBLPROPERTIES (
    'directory.odps' = 'true'
);

在读取MaxCompute外部表时,和其他OSS文件不同的是多了一个表属性'directory.odps' = 'true',这表示表的目录是按照MaxCompute外部表的格式来组织的。
执行查询:
dla.png

关于我们

数据湖分析Data Lake Analytics简介

欢迎大家使用数据湖分析(DLA),DLA不仅仅便宜,且快,且方便,专为阿里云数据湖分析方案而生

  • 支持自建、托管RDS、NoSQL、OSS(JSON、CSV、Parquet等格式)多种数据源分析
  • 支持按量 按照扫描量 的计费方式,准入门槛0元,提供的Serverless的弹性服务为按需收费,不需要购买固定的资源,完全契合业务潮汐带来的资源波动,满足弹性的分析需求,同时极大地降低了运维成本和使用成本
  • 平台底层托管大集群且自动弹性,在一定数据量情况下,分析性能比自建小集群高出400%
  • 支持一键 把 MySQL、PG、SqlServer、PolarDb数据库 拖到DLA,再分析,解决原MySQL不敢分析的问题。 DLA 分析性能TPC-H 10G情况 比原MySQL 8c16g 等高出10倍,数据量越大,MySQL性能越差,在1TB数据量下,原MySQL基本跑不出来
  • 产品文档:https://www.aliyun.com/product/datalakeanalytics
  • 帮助文档:https://help.aliyun.com/document_detail/70378.html
  • MySQL&PG&SqlServer一键同步数据到DLA:https://help.aliyun.com/document_detail/126559.html
  • 新客户1元试用:https://common-buy.aliyun.com/?commodityCode=openanalytics_post

欢迎大家群内咨询

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
531 7
|
10天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
24天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
129 15
|
30天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
29天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
|
2月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
122 4
|
2月前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
43 4
|
2月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
307 5
|
2月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
33 4
|
3月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势