使用DLA分析MaxCompute外部表数据

简介: MaxCompute支持通过外部表关联OSS,进行数据输出。然而,由于MaxCompute外部表的目录结构比较特殊,无法使用MaxCompute以外的工具对OSS上的文件做进一步的分析,限制了外部表的使用场景。因此,DLA最近支持了分析MaxCompute外部表数据文件的功能,借助DLA强大的生态,可以方便地对MaxCompute外部表进行分析,并能够和其他数据源做联合查询。本文通过一个简单的例子介绍如何使用这个功能。

MaxCompute支持通过外部表关联OSS,进行数据输出。然而,由于MaxCompute外部表的目录结构比较特殊,无法使用MaxCompute以外的工具对OSS上的文件做进一步的分析,限制了外部表的使用场景。因此,DLA最近支持了分析MaxCompute外部表数据文件的功能,借助DLA强大的生态,可以方便地对MaxCompute外部表进行分析,并能够和其他数据源做联合查询。
本文通过一个简单的例子介绍如何使用这个功能。

准备工作:创建MaxCompute外部表并写入数据


进入MaxCompute工作空间,新建一个ODPS SQL节点,在其中执行如下语句创建OSS外表:

CREATE EXTERNAL TABLE parquet
(
  a int,
  b int
)
STORED AS PARQUET
LOCATION 'oss://${accessKeyId}:${accessKeySecret}@${endpoint}/${bucket}/${userPath}/';

关于创建外部表语法的更多信息可参考MaxCompute文档
建表之后,我们可以执行如下语句向其中写入几条测试数据:

insert into parquet values(1,1);
insert into parquet values(2,2);

执行查询,我们可以看到数据已经写入到外表中了:

odps.png

使用DLA分析MaxCompute外部表

首先创建一个OSS Schema:

CREATE SCHEMA dla_oss_db with DBPROPERTIES(
catalog='oss',
location 'oss://${bucket}/${userPath}/'
)

创建表:

CREATE EXTERNAL TABLE odps_parquet (
    `a` int,
    `b` int
)
STORED AS PARQUET
LOCATION 'oss://${bucket}/${userPath}/'
TBLPROPERTIES (
    'directory.odps' = 'true'
);

在读取MaxCompute外部表时,和其他OSS文件不同的是多了一个表属性'directory.odps' = 'true',这表示表的目录是按照MaxCompute外部表的格式来组织的。
执行查询:
dla.png

关于我们

数据湖分析Data Lake Analytics简介

欢迎大家使用数据湖分析(DLA),DLA不仅仅便宜,且快,且方便,专为阿里云数据湖分析方案而生

  • 支持自建、托管RDS、NoSQL、OSS(JSON、CSV、Parquet等格式)多种数据源分析
  • 支持按量 按照扫描量 的计费方式,准入门槛0元,提供的Serverless的弹性服务为按需收费,不需要购买固定的资源,完全契合业务潮汐带来的资源波动,满足弹性的分析需求,同时极大地降低了运维成本和使用成本
  • 平台底层托管大集群且自动弹性,在一定数据量情况下,分析性能比自建小集群高出400%
  • 支持一键 把 MySQL、PG、SqlServer、PolarDb数据库 拖到DLA,再分析,解决原MySQL不敢分析的问题。 DLA 分析性能TPC-H 10G情况 比原MySQL 8c16g 等高出10倍,数据量越大,MySQL性能越差,在1TB数据量下,原MySQL基本跑不出来
  • 产品文档:https://www.aliyun.com/product/datalakeanalytics
  • 帮助文档:https://help.aliyun.com/document_detail/70378.html
  • MySQL&PG&SqlServer一键同步数据到DLA:https://help.aliyun.com/document_detail/126559.html
  • 新客户1元试用:https://common-buy.aliyun.com/?commodityCode=openanalytics_post

欢迎大家群内咨询

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
25 1
|
3天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
1天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
19 1
|
3天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
3天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
18 2
|
5天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
5天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。
|
9天前
|
SQL 存储 大数据
大数据中数据提取
【10月更文挑战第19天】
25 2
|
8天前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
28 0
|
25天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势