【图解数据结构】 二叉树遍历 | 算法必看系列二十九

简介: 二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

原文链接

扯一扯

image.png

二叉树遍历原理

二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

为什么研究二叉树的遍历?

因为计算机只会处理线性序列,而我们研究遍历,就是把树中的结点变成某种意义的线性序列,这给程序的实现带来了好处。

二叉树的创建

遍历二叉树之前,首先我们要有一个二叉树。要创建一个如下图的二叉树,就要先进行二叉树的扩展,也就是将二叉树每个结点的空指针引出一个虚结点,其值为一个特定值,比如’#’。处理后的二叉树称为原二叉树的扩展二叉树。扩展二叉树的每个遍历序列可以确定一个一颗二叉树,我们采用前序遍历创建二叉树。前序遍历序列:124##5##36##7##。

image.png

image.png

定义二叉链表结点:

/// <summary>
/// 二叉链表结点类
/// </summary>
/// <typeparam name="T"></typeparam>
public class TreeNode<T>
{
    /// <summary>
    /// 数据域
    /// </summary>
    public T Data { get; set; }
    /// <summary>
    /// 左孩子   
    /// </summary>
    public TreeNode<T> LChild { get; set; } 
    /// <summary>
    /// 右孩子
    /// </summary>
    public TreeNode<T> RChild { get; set; } 

    public TreeNode(T val, TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = val;
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = default(T);
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(T val)
    {
        Data = val;
        LChild = null;
        RChild = null;
    }

    public TreeNode()
    {
        Data = default(T);
        LChild = null;
        RChild = null;
    }
}

先序递归创建二叉树:

/// <summary>
/// 先序创建二叉树
/// </summary>
/// <param name="node"></param>
public static void CreateTree(TreeNode<char> node)
{
    node.Data = Console.ReadKey().KeyChar;

    if (node.Data == '#')
    {
        return;
    }

    node.LChild = new TreeNode<char>();

    CreateTree(node.LChild);

    if (node.LChild.Data == '#')
    {
        node.LChild = null;
    }

    node.RChild = new TreeNode<char>();

    CreateTree(node.RChild);

    if (node.RChild.Data == '#')
    {
        node.RChild = null;
    }
}

二叉树遍历方法

image.png
image.png

前序遍历

image.png

递归方式实现前序遍历
具体过程:
1.先访问根节点
2.再序遍历左子树
3.最后序遍历右子树
代码实现:

public static void PreOrderRecur(TreeNode<char> treeNode)
 {
     if (treeNode == null)
     {
         return;
     }
     Console.Write(treeNode.Data); 
     PreOrderRecur(treeNode.LChild);
     PreOrderRecur(treeNode.RChild);
 }

非递归方式实现前序遍历

具体过程:

1.首先申请一个新的栈,记为stack;
2.将头结点head压入stack中;
3.每次从stack中弹出栈顶节点,记为cur,然后打印cur值,如果cur右孩子不为空,则将右孩子压入栈中;如果cur的左孩子不为空,将其压入stack中;
4.重复步骤3,直到stack为空.
代码实现:

 public static void PreOrder(TreeNode<char> head)
{
    if (head == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(head);
    while (!(stack.Count == 0))
    {
        TreeNode<char> cur = stack.Pop();
        Console.Write(cur.Data);

        if (cur.RChild != null)
        {
            stack.Push(cur.RChild);
        }
        if (cur.LChild != null)
        {
            stack.Push(cur.LChild);
        }
    }
}

过程模拟:
image.png

执行结果:

中序遍历

image.png

递归方式实现中序遍历

具体过程:

1/先中序遍历左子树
2/再访问根节点
3/最后中序遍历右子树
代码实现:

public static void InOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }  
    InOrderRecur(treeNode.LChild);
    Console.Write(treeNode.Data); 
    InOrderRecur(treeNode.RChild);
}

非递归方式实现中序遍历

具体过程:

1/申请一个新栈,记为stack,申请一个变量cur,初始时令cur为头节点;
2/先把cur节点压入栈中,对以cur节点为头的整棵子树来说,依次把整棵树的左子树压入栈中,即不断令cur=cur.left,然后重复步骤2;
3/不断重复步骤2,直到发现cur为空,此时从stack中弹出一个节点记为node,打印node的值,并让cur = node.right,然后继续重复步骤2;
4/当stack为空并且cur为空时结束。
代码实现:

public static void InOrder(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();

    TreeNode<char> cur = treeNode;

    while (!(stack.Count == 0) || cur != null)
    {
        while (cur != null)
        {
            stack.Push(cur);
            cur = cur.LChild;
        }
        TreeNode<char> node = stack.Pop();
        Console.WriteLine(node.Data);
        cur = node.RChild;
    }
}

过程模拟:
image.png
执行结果:

后序遍历

image.png

递归方式实现后序遍历

1、先后序遍历左子树
2、再后序遍历右子树
3、最后访问根节点
代码实现:

public static void PosOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    PosOrderRecur(treeNode.LChild);
    PosOrderRecur(treeNode.RChild);
    Console.Write(treeNode.Data); 
}

非递归方式实现后序遍历一

具体过程:

使用两个栈实现

1、申请两个栈stack1,stack2,然后将头结点压入stack1中;
2、从stack1中弹出的节点记为cur,然后先把cur的左孩子压入stack1中,再把cur的右孩子压入stack1中;
3、在整个过程中,每一个从stack1中弹出的节点都放在第二个栈stack2中;
4、不断重复步骤2和步骤3,直到stack1为空,过程停止;
5、从stack2中依次弹出节点并打印,打印的顺序就是后序遍历的顺序;
代码实现:

public static void PosOrderOne(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack1 = new Stack<TreeNode<char>>();
    Stack<TreeNode<char>> stack2 = new Stack<TreeNode<char>>();

    stack1.Push(treeNode);
    TreeNode<char> cur = treeNode;

    while (!(stack1.Count == 0))
    {
        cur = stack1.Pop();
        if (cur.LChild != null)
        {
            stack1.Push(cur.LChild);
        }
        if (cur.RChild != null)
        {
            stack1.Push(cur.RChild);
        }
        stack2.Push(cur);
    }

    while (!(stack2.Count == 0))
    {
        TreeNode<char> node = stack2.Pop();
        Console.WriteLine(node.Data); ;
    }
}

过程模拟:
image.png
执行结果:

非递归方式实现后序遍历二

具体过程:

使用一个栈实现

1、申请一个栈stack,将头节点压入stack,同时设置两个变量 h 和 c,在整个流程中,h代表最近一次弹出并打印的节点,c代表当前stack的栈顶节点,初始时令h为头节点,,c为null;
2、每次令c等于当前stack的栈顶节点,但是不从stack中弹出节点,此时分一下三种情况:
(1)如果c的左孩子不为空,并且h不等于c的左孩子,也不等于c的右孩子,则吧c的左孩子压入stack中

(2)如果情况1不成立,并且c的右孩子不为空,并且h不等于c的右孩子,则把c的右孩子压入stack中;

(3)如果情况1和2不成立,则从stack中弹出c并打印,然后令h等于c;

1/一直重复步骤2,直到stack为空.
代码实现:

public static void PosOrderTwo(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(treeNode);

    TreeNode<char> h = treeNode;
    TreeNode<char> c = null;
    while (!(stack.Count == 0))
    {
        c = stack.Peek();
        //c结点有左孩子 并且 左孩子没被遍历(输出)过 并且 右孩子没被遍历过
        if (c.LChild != null && h != c.LChild && h != c.RChild)
            stack.Push(c.LChild);
        //c结点有右孩子 并且 右孩子没被遍历(输出)过
        else if (c.RChild != null && h != c.RChild)
            stack.Push(c.RChild);
        //c结点没有孩子结点 或者孩子结点已经被遍历(输出)过
        else
        {
            TreeNode<char> node = stack.Pop();
            Console.WriteLine(node.Data);
            h = c;
        }
    }
}

过程模拟:
image.png
执行结果:

层序遍历

image.png
具体过程:

1、首先申请一个新的队列,记为queue;
2、将头结点head压入queue中;
3、每次从queue中出队,记为node,然后打印node值,如果node左孩子不为空,则将左孩子入队;如果node的右孩子不为空,则将右孩子入队;
4、重复步骤3,直到queue为空。
代码实现:

public static void LevelOrder(TreeNode<char> treeNode)
{
    if(treeNode == null)
    {
         return;
    }
    Queue<TreeNode<char>> queue = new Queue<TreeNode<char>>();
    queue.Enqueue(treeNode);

    while (queue.Any())
    {
        TreeNode<char> node = queue.Dequeue();
        Console.Write(node.Data);

        if (node.Left != null)
        {
            queue.Enqueue(node.Left);
        }

        if (node.Right != null)
        {
            queue.Enqueue(node.Right);
        }
    }
}

image.png

执行结果

来源:https://www.cnblogs.com/songwenjie/p/8955856.html

相关文章
|
7月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
306 1
|
7月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
205 0
|
11月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
361 10
 算法系列之数据结构-二叉树
|
11月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
353 3
 算法系列之数据结构-Huffman树
|
11月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
477 22
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
457 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
309 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
292 3
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
235 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
266 8