【图解数据结构】 二叉树遍历 | 算法必看系列二十九

简介: 二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

原文链接

扯一扯

image.png

二叉树遍历原理

二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

为什么研究二叉树的遍历?

因为计算机只会处理线性序列,而我们研究遍历,就是把树中的结点变成某种意义的线性序列,这给程序的实现带来了好处。

二叉树的创建

遍历二叉树之前,首先我们要有一个二叉树。要创建一个如下图的二叉树,就要先进行二叉树的扩展,也就是将二叉树每个结点的空指针引出一个虚结点,其值为一个特定值,比如’#’。处理后的二叉树称为原二叉树的扩展二叉树。扩展二叉树的每个遍历序列可以确定一个一颗二叉树,我们采用前序遍历创建二叉树。前序遍历序列:124##5##36##7##。

image.png

image.png

定义二叉链表结点:

/// <summary>
/// 二叉链表结点类
/// </summary>
/// <typeparam name="T"></typeparam>
public class TreeNode<T>
{
    /// <summary>
    /// 数据域
    /// </summary>
    public T Data { get; set; }
    /// <summary>
    /// 左孩子   
    /// </summary>
    public TreeNode<T> LChild { get; set; } 
    /// <summary>
    /// 右孩子
    /// </summary>
    public TreeNode<T> RChild { get; set; } 

    public TreeNode(T val, TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = val;
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = default(T);
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(T val)
    {
        Data = val;
        LChild = null;
        RChild = null;
    }

    public TreeNode()
    {
        Data = default(T);
        LChild = null;
        RChild = null;
    }
}

先序递归创建二叉树:

/// <summary>
/// 先序创建二叉树
/// </summary>
/// <param name="node"></param>
public static void CreateTree(TreeNode<char> node)
{
    node.Data = Console.ReadKey().KeyChar;

    if (node.Data == '#')
    {
        return;
    }

    node.LChild = new TreeNode<char>();

    CreateTree(node.LChild);

    if (node.LChild.Data == '#')
    {
        node.LChild = null;
    }

    node.RChild = new TreeNode<char>();

    CreateTree(node.RChild);

    if (node.RChild.Data == '#')
    {
        node.RChild = null;
    }
}

二叉树遍历方法

image.png
image.png

前序遍历

image.png

递归方式实现前序遍历
具体过程:
1.先访问根节点
2.再序遍历左子树
3.最后序遍历右子树
代码实现:

public static void PreOrderRecur(TreeNode<char> treeNode)
 {
     if (treeNode == null)
     {
         return;
     }
     Console.Write(treeNode.Data); 
     PreOrderRecur(treeNode.LChild);
     PreOrderRecur(treeNode.RChild);
 }

非递归方式实现前序遍历

具体过程:

1.首先申请一个新的栈,记为stack;
2.将头结点head压入stack中;
3.每次从stack中弹出栈顶节点,记为cur,然后打印cur值,如果cur右孩子不为空,则将右孩子压入栈中;如果cur的左孩子不为空,将其压入stack中;
4.重复步骤3,直到stack为空.
代码实现:

 public static void PreOrder(TreeNode<char> head)
{
    if (head == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(head);
    while (!(stack.Count == 0))
    {
        TreeNode<char> cur = stack.Pop();
        Console.Write(cur.Data);

        if (cur.RChild != null)
        {
            stack.Push(cur.RChild);
        }
        if (cur.LChild != null)
        {
            stack.Push(cur.LChild);
        }
    }
}

过程模拟:
image.png

执行结果:

中序遍历

image.png

递归方式实现中序遍历

具体过程:

1/先中序遍历左子树
2/再访问根节点
3/最后中序遍历右子树
代码实现:

public static void InOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }  
    InOrderRecur(treeNode.LChild);
    Console.Write(treeNode.Data); 
    InOrderRecur(treeNode.RChild);
}

非递归方式实现中序遍历

具体过程:

1/申请一个新栈,记为stack,申请一个变量cur,初始时令cur为头节点;
2/先把cur节点压入栈中,对以cur节点为头的整棵子树来说,依次把整棵树的左子树压入栈中,即不断令cur=cur.left,然后重复步骤2;
3/不断重复步骤2,直到发现cur为空,此时从stack中弹出一个节点记为node,打印node的值,并让cur = node.right,然后继续重复步骤2;
4/当stack为空并且cur为空时结束。
代码实现:

public static void InOrder(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();

    TreeNode<char> cur = treeNode;

    while (!(stack.Count == 0) || cur != null)
    {
        while (cur != null)
        {
            stack.Push(cur);
            cur = cur.LChild;
        }
        TreeNode<char> node = stack.Pop();
        Console.WriteLine(node.Data);
        cur = node.RChild;
    }
}

过程模拟:
image.png
执行结果:

后序遍历

image.png

递归方式实现后序遍历

1、先后序遍历左子树
2、再后序遍历右子树
3、最后访问根节点
代码实现:

public static void PosOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    PosOrderRecur(treeNode.LChild);
    PosOrderRecur(treeNode.RChild);
    Console.Write(treeNode.Data); 
}

非递归方式实现后序遍历一

具体过程:

使用两个栈实现

1、申请两个栈stack1,stack2,然后将头结点压入stack1中;
2、从stack1中弹出的节点记为cur,然后先把cur的左孩子压入stack1中,再把cur的右孩子压入stack1中;
3、在整个过程中,每一个从stack1中弹出的节点都放在第二个栈stack2中;
4、不断重复步骤2和步骤3,直到stack1为空,过程停止;
5、从stack2中依次弹出节点并打印,打印的顺序就是后序遍历的顺序;
代码实现:

public static void PosOrderOne(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack1 = new Stack<TreeNode<char>>();
    Stack<TreeNode<char>> stack2 = new Stack<TreeNode<char>>();

    stack1.Push(treeNode);
    TreeNode<char> cur = treeNode;

    while (!(stack1.Count == 0))
    {
        cur = stack1.Pop();
        if (cur.LChild != null)
        {
            stack1.Push(cur.LChild);
        }
        if (cur.RChild != null)
        {
            stack1.Push(cur.RChild);
        }
        stack2.Push(cur);
    }

    while (!(stack2.Count == 0))
    {
        TreeNode<char> node = stack2.Pop();
        Console.WriteLine(node.Data); ;
    }
}

过程模拟:
image.png
执行结果:

非递归方式实现后序遍历二

具体过程:

使用一个栈实现

1、申请一个栈stack,将头节点压入stack,同时设置两个变量 h 和 c,在整个流程中,h代表最近一次弹出并打印的节点,c代表当前stack的栈顶节点,初始时令h为头节点,,c为null;
2、每次令c等于当前stack的栈顶节点,但是不从stack中弹出节点,此时分一下三种情况:
(1)如果c的左孩子不为空,并且h不等于c的左孩子,也不等于c的右孩子,则吧c的左孩子压入stack中

(2)如果情况1不成立,并且c的右孩子不为空,并且h不等于c的右孩子,则把c的右孩子压入stack中;

(3)如果情况1和2不成立,则从stack中弹出c并打印,然后令h等于c;

1/一直重复步骤2,直到stack为空.
代码实现:

public static void PosOrderTwo(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(treeNode);

    TreeNode<char> h = treeNode;
    TreeNode<char> c = null;
    while (!(stack.Count == 0))
    {
        c = stack.Peek();
        //c结点有左孩子 并且 左孩子没被遍历(输出)过 并且 右孩子没被遍历过
        if (c.LChild != null && h != c.LChild && h != c.RChild)
            stack.Push(c.LChild);
        //c结点有右孩子 并且 右孩子没被遍历(输出)过
        else if (c.RChild != null && h != c.RChild)
            stack.Push(c.RChild);
        //c结点没有孩子结点 或者孩子结点已经被遍历(输出)过
        else
        {
            TreeNode<char> node = stack.Pop();
            Console.WriteLine(node.Data);
            h = c;
        }
    }
}

过程模拟:
image.png
执行结果:

层序遍历

image.png
具体过程:

1、首先申请一个新的队列,记为queue;
2、将头结点head压入queue中;
3、每次从queue中出队,记为node,然后打印node值,如果node左孩子不为空,则将左孩子入队;如果node的右孩子不为空,则将右孩子入队;
4、重复步骤3,直到queue为空。
代码实现:

public static void LevelOrder(TreeNode<char> treeNode)
{
    if(treeNode == null)
    {
         return;
    }
    Queue<TreeNode<char>> queue = new Queue<TreeNode<char>>();
    queue.Enqueue(treeNode);

    while (queue.Any())
    {
        TreeNode<char> node = queue.Dequeue();
        Console.Write(node.Data);

        if (node.Left != null)
        {
            queue.Enqueue(node.Left);
        }

        if (node.Right != null)
        {
            queue.Enqueue(node.Right);
        }
    }
}

image.png

执行结果

来源:https://www.cnblogs.com/songwenjie/p/8955856.html

相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
38 5
|
19天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
70 8
|
15天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
22 2
|
18天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
33 4
|
1月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
20天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
103 9
|
11天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
19 1
下一篇
无影云桌面