【图解数据结构】 二叉树遍历 | 算法必看系列二十九

简介: 二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

原文链接

扯一扯

image.png

二叉树遍历原理

二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

为什么研究二叉树的遍历?

因为计算机只会处理线性序列,而我们研究遍历,就是把树中的结点变成某种意义的线性序列,这给程序的实现带来了好处。

二叉树的创建

遍历二叉树之前,首先我们要有一个二叉树。要创建一个如下图的二叉树,就要先进行二叉树的扩展,也就是将二叉树每个结点的空指针引出一个虚结点,其值为一个特定值,比如’#’。处理后的二叉树称为原二叉树的扩展二叉树。扩展二叉树的每个遍历序列可以确定一个一颗二叉树,我们采用前序遍历创建二叉树。前序遍历序列:124##5##36##7##。

image.png

image.png

定义二叉链表结点:

/// <summary>
/// 二叉链表结点类
/// </summary>
/// <typeparam name="T"></typeparam>
public class TreeNode<T>
{
    /// <summary>
    /// 数据域
    /// </summary>
    public T Data { get; set; }
    /// <summary>
    /// 左孩子   
    /// </summary>
    public TreeNode<T> LChild { get; set; } 
    /// <summary>
    /// 右孩子
    /// </summary>
    public TreeNode<T> RChild { get; set; } 

    public TreeNode(T val, TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = val;
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = default(T);
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(T val)
    {
        Data = val;
        LChild = null;
        RChild = null;
    }

    public TreeNode()
    {
        Data = default(T);
        LChild = null;
        RChild = null;
    }
}

先序递归创建二叉树:

/// <summary>
/// 先序创建二叉树
/// </summary>
/// <param name="node"></param>
public static void CreateTree(TreeNode<char> node)
{
    node.Data = Console.ReadKey().KeyChar;

    if (node.Data == '#')
    {
        return;
    }

    node.LChild = new TreeNode<char>();

    CreateTree(node.LChild);

    if (node.LChild.Data == '#')
    {
        node.LChild = null;
    }

    node.RChild = new TreeNode<char>();

    CreateTree(node.RChild);

    if (node.RChild.Data == '#')
    {
        node.RChild = null;
    }
}

二叉树遍历方法

image.png
image.png

前序遍历

image.png

递归方式实现前序遍历
具体过程:
1.先访问根节点
2.再序遍历左子树
3.最后序遍历右子树
代码实现:

public static void PreOrderRecur(TreeNode<char> treeNode)
 {
     if (treeNode == null)
     {
         return;
     }
     Console.Write(treeNode.Data); 
     PreOrderRecur(treeNode.LChild);
     PreOrderRecur(treeNode.RChild);
 }

非递归方式实现前序遍历

具体过程:

1.首先申请一个新的栈,记为stack;
2.将头结点head压入stack中;
3.每次从stack中弹出栈顶节点,记为cur,然后打印cur值,如果cur右孩子不为空,则将右孩子压入栈中;如果cur的左孩子不为空,将其压入stack中;
4.重复步骤3,直到stack为空.
代码实现:

 public static void PreOrder(TreeNode<char> head)
{
    if (head == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(head);
    while (!(stack.Count == 0))
    {
        TreeNode<char> cur = stack.Pop();
        Console.Write(cur.Data);

        if (cur.RChild != null)
        {
            stack.Push(cur.RChild);
        }
        if (cur.LChild != null)
        {
            stack.Push(cur.LChild);
        }
    }
}

过程模拟:
image.png

执行结果:

中序遍历

image.png

递归方式实现中序遍历

具体过程:

1/先中序遍历左子树
2/再访问根节点
3/最后中序遍历右子树
代码实现:

public static void InOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }  
    InOrderRecur(treeNode.LChild);
    Console.Write(treeNode.Data); 
    InOrderRecur(treeNode.RChild);
}

非递归方式实现中序遍历

具体过程:

1/申请一个新栈,记为stack,申请一个变量cur,初始时令cur为头节点;
2/先把cur节点压入栈中,对以cur节点为头的整棵子树来说,依次把整棵树的左子树压入栈中,即不断令cur=cur.left,然后重复步骤2;
3/不断重复步骤2,直到发现cur为空,此时从stack中弹出一个节点记为node,打印node的值,并让cur = node.right,然后继续重复步骤2;
4/当stack为空并且cur为空时结束。
代码实现:

public static void InOrder(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();

    TreeNode<char> cur = treeNode;

    while (!(stack.Count == 0) || cur != null)
    {
        while (cur != null)
        {
            stack.Push(cur);
            cur = cur.LChild;
        }
        TreeNode<char> node = stack.Pop();
        Console.WriteLine(node.Data);
        cur = node.RChild;
    }
}

过程模拟:
image.png
执行结果:

后序遍历

image.png

递归方式实现后序遍历

1、先后序遍历左子树
2、再后序遍历右子树
3、最后访问根节点
代码实现:

public static void PosOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    PosOrderRecur(treeNode.LChild);
    PosOrderRecur(treeNode.RChild);
    Console.Write(treeNode.Data); 
}

非递归方式实现后序遍历一

具体过程:

使用两个栈实现

1、申请两个栈stack1,stack2,然后将头结点压入stack1中;
2、从stack1中弹出的节点记为cur,然后先把cur的左孩子压入stack1中,再把cur的右孩子压入stack1中;
3、在整个过程中,每一个从stack1中弹出的节点都放在第二个栈stack2中;
4、不断重复步骤2和步骤3,直到stack1为空,过程停止;
5、从stack2中依次弹出节点并打印,打印的顺序就是后序遍历的顺序;
代码实现:

public static void PosOrderOne(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack1 = new Stack<TreeNode<char>>();
    Stack<TreeNode<char>> stack2 = new Stack<TreeNode<char>>();

    stack1.Push(treeNode);
    TreeNode<char> cur = treeNode;

    while (!(stack1.Count == 0))
    {
        cur = stack1.Pop();
        if (cur.LChild != null)
        {
            stack1.Push(cur.LChild);
        }
        if (cur.RChild != null)
        {
            stack1.Push(cur.RChild);
        }
        stack2.Push(cur);
    }

    while (!(stack2.Count == 0))
    {
        TreeNode<char> node = stack2.Pop();
        Console.WriteLine(node.Data); ;
    }
}

过程模拟:
image.png
执行结果:

非递归方式实现后序遍历二

具体过程:

使用一个栈实现

1、申请一个栈stack,将头节点压入stack,同时设置两个变量 h 和 c,在整个流程中,h代表最近一次弹出并打印的节点,c代表当前stack的栈顶节点,初始时令h为头节点,,c为null;
2、每次令c等于当前stack的栈顶节点,但是不从stack中弹出节点,此时分一下三种情况:
(1)如果c的左孩子不为空,并且h不等于c的左孩子,也不等于c的右孩子,则吧c的左孩子压入stack中

(2)如果情况1不成立,并且c的右孩子不为空,并且h不等于c的右孩子,则把c的右孩子压入stack中;

(3)如果情况1和2不成立,则从stack中弹出c并打印,然后令h等于c;

1/一直重复步骤2,直到stack为空.
代码实现:

public static void PosOrderTwo(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(treeNode);

    TreeNode<char> h = treeNode;
    TreeNode<char> c = null;
    while (!(stack.Count == 0))
    {
        c = stack.Peek();
        //c结点有左孩子 并且 左孩子没被遍历(输出)过 并且 右孩子没被遍历过
        if (c.LChild != null && h != c.LChild && h != c.RChild)
            stack.Push(c.LChild);
        //c结点有右孩子 并且 右孩子没被遍历(输出)过
        else if (c.RChild != null && h != c.RChild)
            stack.Push(c.RChild);
        //c结点没有孩子结点 或者孩子结点已经被遍历(输出)过
        else
        {
            TreeNode<char> node = stack.Pop();
            Console.WriteLine(node.Data);
            h = c;
        }
    }
}

过程模拟:
image.png
执行结果:

层序遍历

image.png
具体过程:

1、首先申请一个新的队列,记为queue;
2、将头结点head压入queue中;
3、每次从queue中出队,记为node,然后打印node值,如果node左孩子不为空,则将左孩子入队;如果node的右孩子不为空,则将右孩子入队;
4、重复步骤3,直到queue为空。
代码实现:

public static void LevelOrder(TreeNode<char> treeNode)
{
    if(treeNode == null)
    {
         return;
    }
    Queue<TreeNode<char>> queue = new Queue<TreeNode<char>>();
    queue.Enqueue(treeNode);

    while (queue.Any())
    {
        TreeNode<char> node = queue.Dequeue();
        Console.Write(node.Data);

        if (node.Left != null)
        {
            queue.Enqueue(node.Left);
        }

        if (node.Right != null)
        {
            queue.Enqueue(node.Right);
        }
    }
}

image.png

执行结果

来源:https://www.cnblogs.com/songwenjie/p/8955856.html

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
55 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
141 4
|
15天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
13天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
45 5
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
67 1
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
146 80
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。