耗时又繁重的SQL诊断优化,以后就都交给数据库自治服务DAS吧!

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,企业版 4核16GB
推荐场景:
HTAP混合负载
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群版 2核4GB 100GB
推荐场景:
搭建个人博客
简介: 4200万慢SQL的选择

作者:斯干,阿里云数据库高级技术专家

在我们业务系统中,数据库越来越扮演着举足轻重的角色。

和其它公司一样,在阿里巴巴业务场景下,大部分业务跟数据库有着非常紧密的关系,数据库一个微小的抖动都有可能对业务造成非常大的影响, 如何让数据库更稳定,得到持续优化一直都是非常重要的诉求。

数据库环境下的业务优化,通常会提到三个层面:
1)应用层面优化:应用代码逻辑优化,以更高效的方式处理数据;
2)实例层面优化:通过环境参数调整,优化实例的运行效率;
3)SQL层面优化:通过物理数据库设计、SQL语句改写等优化手段,确保以最佳的方式获取数据。

开发者通常对于前面两个比较熟悉,对于第三个即SQL层面的优化会有些生疏,甚至会因由谁(数据库管理员或应用开发者)来负责而产生争论,但SQL优化是整个数据库优化中非常关键的一环, 线上SQL性能问题不仅会给业务带来执行效率上的低下,甚至是稳定性上的故障。

按照经验,约80%的数据库性能问题能通过SQL优化手段解决,但SQL优化一直以来都是一个非常复杂的过程,需要多方面的数据库领域专家知识和经验。
例如如何准确地识别执行计划中的瓶颈点,通过优化物理库设计或SQL改写等手段,让数据库优化器回归到最佳执行计划, 另外,由于SQL工作负载及其基础数据庞大且不断变化,SQL优化还是一项非常耗时繁重的任务,这些都决定了SQL优化是一项高门槛,高投入的工作。

SQL诊断优化服务是阿里云数据库自治服务(DAS)中最为核心的服务之一 , 它以SQL语句作为输入,由DAS完成诊断分析并提供专家优化建议(包括索引建议、语句优化建议以及预期收益等信息),用户不必精通数据库优化领域专家知识,即可获得SQL优化诊断、改写和优化相关的专家建议,最大化SQL执行性能。

另外, 依托该能力,DAS的SQL自动优化服务将SQL优化推向了更高的境界,将重人工的被动式优化转变为以智能化为基础的主动式优化,以自优化的自治能力实现SQL优化的无人值守。

接下来我们针对DAS的SQL诊断优化服务能力构建进行详细的解读。

01、面临的挑战

当我们提到诊断优化能力时,很自然会想到两个问题:
能力是否靠谱? 能力是否全面?

确实如此,完美地回答这两个问题将面临非常巨大的挑战, 现将其归纳为如下四点:

❓挑战一:如何选择靠谱的优化推荐算法生成靠谱的建议?

在SQL诊断优化领域,基于规则方式和基于代价模型方式是两种常被选择的优化推荐算法,在目前许多产品和服务中,基于规则的推荐方式被广泛使用,特别是针对MySQL这种WHAT-IF内核能力缺失的数据库,因为该方式相对来说比较简单,容易实现,但另一面也造成了推荐过于机械化,推荐质量难以保证的问题, 举一个例子,例如对如下简单的SQL进行索引的推荐:

SELECT * 
FROM t1
WHERE time_created >= '2017-11-25'
  AND consuming_time > 1000
ORDER BY consuming_time DESC

基于规则,通常会首先生成如下四个候选索引:

IX1(time_created)
IX2(time_created, consuming_time)
IX3(consuming_time)
IX4(consuming_time, time_created)

但最终推荐给用户的是哪个(或哪几个,考虑index oring/anding的情况)索引呢?基于规则的方式很难给出精确的回答,会出现模棱两可的局面。在这个例子中,SQL只是简单的单表查询,那对于再复杂一点的SQL, 例如多个表Join,以及带有复杂的子查询,情况又会如何呢?情况变得更糟糕,更加难以为继。

与此不同,DAS中的SQL诊断优化服务采用的是基于代价模型方式实现,也就它采用和数据库优化器相同的方式去思考优化问题,最终会以执行代价的方式量化评估所有的(或尽可能所有的, 因为是最优解求解的NP类问题,因此在一些极端情况下无法做到所有,只是实现次优)可能推荐候选项,最终作出推荐。即便是如此,但对于MySQL这样的开源数据库支持,还将面临其它不一样的挑战:

WHAT-IF内核能力缺失:无法复用内核的数据库优化器能力来对候选优化方案进行代价量化评估;

统计信息缺失:候选优化方案的代价评估,其本质是执行计划的代价计算,统计信息的缺失便是无米之炊。

❓挑战二:如何具备足够的SQL兼容性?
SQL诊断优化服务如何做到SQL兼容性,其中包括SQL的解析以及SQL语义的验证,这直接关系到能力的全面性,诊断的成功率,它就像入场券,做不到做不全面都是问题。

❓挑战三:如何构建具有足够覆盖度的能力测试集?

长期以来,SQL诊断优化能力的构建一直都是颇具挑战性的课题,挑战不仅在于如何将据库优化领域专家知识融入, 还包括如何构建一个庞大的测试案例库用于其核心能力验证,它就像一把尺子可以衡量能力,同时又可以以此为驱动,加速能力的构建, 因此在整个过程中,拥有足够覆盖度,准确的测试案例库是能力构建过程中至关重要的一环。

但构建足够好的测试案例库是一件非常困难的事情,挑战主要体现在两个方面:

足够完备性保证:影响SQL优化的因素很多, 例如影响索引选择的因素有上百个,加之各因素之间形成组合,这就形成了庞大的案例特征集合,如何让这些特征一一映射到测试案例也是非常庞大的工程;

测试案例设计需要专业知识且信息量大,例如对于单一测试案例设计也需要专业知识且测试案例中携带的信息量大,如索引推荐测试案例,它包括:

 a) schema设计:如表、已有索引、约束等;
 b)各类统计信息数据;
 c)环境参数等等。

❓挑战四:如何构建大规模的诊断服务能力?

SQL诊断优化服务需要具备服务于云上百万级数据库实例的能力,其线上服务能力同样面临巨大挑战,例如如何实现复杂的计算服务服务化拆分,计算服务的横向伸缩,最大化的并行,资源访问分布式环境下的并发控制,不同优先级的有效调度消除隔离,峰值缓冲等等。

02、能力构建

面对上面提到的众多挑战,下面着重从DAS中的SQL诊断优化引擎核心技术架构以及能力测试集的构建两个维度进一步解读。

2.1核心技术架构

胡1.png

图1: SQL诊断优化引擎核心架构

上图1是SQL诊断优化引擎的核心架构, 它实现一套独立于数据库之外的优化器,包括自适应的统计信息收集以及执行计划的代价计算,以此为基础弥补WHAT-IF内核能力缺失,自适应的统计信息收集弥补统计信息缺失。其具体的工作过程如下:

SQL解析与验证:引擎对查询语句做解析验证,验证输入查询语句是否符合标准,识别查询语句的组成形成语法树,例如:谓词以及谓词类型、排序字段、聚合字段、查询字段等,识别查询语句相关字段的数据类型。验证SQL使用到的表、字段是否符合目标数据库的结构设计。

候选索引生成:依据解析验证后的语法树,生成多种候选索引组合;

基于代价评估:代价评估基于内置独立于数据库内核的优化器,获取数据库统计信息,在诊断引擎内部作缓存。诊断引擎内置优化器基于统计信息计算代价,评估每个索引的代价以及不同SQL改写方法下的代价评估,从而从代价选择最优索引或SQL改写方法。

索引合并与择优:引擎输入可以是一条查询语句,也可以为多个查询语句,或者整个数据库实例所有的查询语句。为多个查询语句做索引推荐,不同的查询语句的索引建议,以及已经存在的物理索引,有可能存在相同索引、前缀相同索引、雷同索引。

2.2能力测试集构建

如前面有关挑战性章节所述,我们的目标是构建具有足够覆盖度的能力测试集,并以此为尺,度量能力,驱动能力构建。在这一过程中,如下图2所示,我们构建了以用例系统为中心的开发模式。

胡2.png

图2: 案例系统

能力测试集构建的基本思想,首先通过特征化实现测试案例基于特征的形式化描述,形成测试案例形式化特征库,并具备足够的完备性;

在阿里巴巴集团内部,我们已经对全网数据库实例上全部SQL进行实时采集和存储,借助阿里巴巴这个大平台业务的丰富性和SQL场景的丰富行,以特征化形式描述为抓手对线上海量全量SQL资源分析搜寻符合指定特征的真实案例,抽取测试案例所需的信息(注:案例库的数据均来自阿里巴巴集团内部业务,所涉及的线上抽取信息,如统计信息,均经过加密脱敏处理,此过程为无人参与的全自动化过程),最终完成测试案例库构建。
最后通过 “测试用例形式化特征库” 和 “测试案例库”的特征比对,可实现测试完备度和覆盖度的评估, 例如:

1) 哪些测形式化特征测试用例已被测试用例覆盖,完备度是多少?
2) 哪些形式化特征测试用例,当前的诊断优化能力未覆盖?或测试验证失败?
3)在一段时间哪些测形式化特征测试用例出现频繁的回归问题?
4)各能力级的测试用例覆盖率怎样?

03、真金不怕火练

DAS的SQL诊断优化服务云上发布前, 已在阿里巴巴集团内部稳定运行将近3年多时间,日平均诊断量在5万左右, 很好地支撑着整个集团业务应用的SQL优化,使用场景应用场景主要包括:

1、自助优化:集团用户指定问题SQL, 服务完成诊断并提供优化专家建议;

2、自动优化:自动优化服务自动识别业务数据库实例工作负载上的慢查询,主动完成诊断,生成优化建议,评估后编排优化任务,自动完成后续的优化上线操作及性能跟踪,形成全自动的优化闭环,提升数据库性能,持续保持数据库实例运行在最佳优化状态。

3年多来,SQL诊断成功率保持在98%以上,针对慢SQL的推荐率超过75%。

截止到2020年3月底,自动SQL优化已累计优化超4200万慢SQL,集团全网慢SQL下降92%左右。

更为重要的是,SQL诊断优化服务已经构建了有效的主动式分析,反馈系统,线上诊断失败案例,用户反馈案例,自动优化中的回滚案例会自动回流到案例系统,一刻不停地驱动着诊断服务在快速迭代中成长。

04、如何使用

您可以在阿里云数据库自治服务 DAS 上免费使用该功能,点击这里申请体验。

*相关阅读
业务异常只能看着数据库崩溃?看看应急处理利器——自动SQL限流

接下来每周我们会有系列文章,深度解读DAS的AutoScale、异常检测服务、自动SQL优化服务、基于Workload的SQL Review、智能压测、智能调参等等,敬请关注。

直播预告

数据库即将迈入自动驾驶时代
4月22日 15:00 — 16:30
数据库自治服务DAS重磅新品发布会
期待与你一同见证精彩蜕变
点击这里立即预约直播

相关实践学习
使用DAS实现数据库自动扩容和回缩
暂无
目录
相关文章
|
1天前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
19 13
|
3天前
|
存储 缓存 监控
如何优化数据库子查询?
【7月更文挑战第22天】如何优化数据库子查询?
33 15
|
3天前
|
存储 缓存 监控
优化数据库查询的关键
【7月更文挑战第22天】优化数据库查询的关键
17 7
|
18小时前
|
SQL 缓存 关系型数据库
使用EXPLAIN进行SQL查询优化时,应该关注哪些信息
使用EXPLAIN进行SQL查询优化时,应该关注哪些信息
6 1
|
3天前
|
SQL 存储 数据库
性能分析工具如Sql explain、show profile和mysqlsla在数据库性能优化中有什么作用
性能分析工具如Sql explain、show profile和mysqlsla在数据库性能优化中有什么作用
|
3天前
|
SQL 缓存 数据库
如何进行SQL优化?
【7月更文挑战第21天】如何进行SQL优化?
14 1
|
5天前
|
存储 关系型数据库 数据库
优化数据库性能的关键技术与实践
数据库作为现代应用架构的核心组成部分,其性能优化直接关系到系统整体的稳定性和效率。本文探讨了提升数据库性能的关键技术和实际应用,涵盖了索引优化、查询优化、存储引擎选择以及硬件优化等方面,旨在帮助开发者有效提升应用程序的响应速度和吞吐量。
|
5天前
|
存储 运维 NoSQL
现代化企业管理中的数据库选择与优化策略
在当今信息化时代,企业管理越来越依赖于高效的数据库系统来支撑业务运作。本文探讨了在选择和优化数据库时需要考虑的关键因素,包括数据类型、访问模式以及性能需求。通过分析不同数据库系统的特性和优劣势,帮助企业在面对日益复杂的业务需求时,选择合适的数据库解决方案,提升管理效率和业务运行质量。
|
5天前
|
存储 负载均衡 定位技术
现代数据库系统中的数据分片策略与优化
数据分片在现代数据库系统中扮演着关键角色,特别是在面对海量数据和高并发访问的情况下。本文探讨了数据分片的基本概念、常见的分片策略(如水平分片与垂直分片)、以及如何通过优化和选择合适的分片策略来提升数据库系统的性能和可扩展性。
|
21小时前
|
SQL
为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变
为什么使用odps.sql.groupby.skewindata = true优化后,逻辑执行计划会发生改变