清华本科生开发强化学习平台「天授」:千行代码实现,性能吊打国外成熟平台,刚刚开源

简介: 云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 江山代有才人出,开源一波更比一波强。 就在最近,一个简洁、轻巧、快速的深度强化学习平台,完全基于Pytorch,在Github上开源。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


江山代有才人出,开源一波更比一波强。

就在最近,一个简洁、轻巧、快速的深度强化学习平台,完全基于Pytorch,在Github上开源。

如果你也是强化学习方面的同仁,走过路过不要错过。

而且作者,还是一枚清华大学的本科生——翁家翌,他开发了”天授(Tianshou)“平台。

没错,名字就叫“天授”。

1

Why 天授?

主要有四大优点:

1、速度快,整个平台只用1500行左右代码实现,在已有的toy scenarios上面完胜所有其他平台,比如3秒训练一个倒立摆(CartPole)。

2

2、模块化,把所有policy都拆成4个模块:

  • init:策略初始化。
  • process_fn:处理函数,从回放缓存中处理数据。
  • call:根据观测值计算操作
  • learn:从给定数据包中学习

只要完善了这些给定的接口就能在100行之内完整实现一个强化学习算法。

3、天授平台目前支持的算法有:

4

随着项目的开发,会有更多的强化学习算法加入天授。

4、接口灵活:用户可以定制各种各样的训练方法,只用少量代码就能实现。

如何使用天授

以DQN(Deep-Q-Network)算法为例,我们在天授平台上使用CartPole小游戏,对它的agent进行训练。

配置环境

习惯上使用OpenAI Gym,如果使用Python代码,只需要简单的调用Tianshou即可。

CartPole-v0是一个可应用DQN算法的简单环境,它拥有离散操作空间。配置环境时,你需要注意它的操作空间是连续还是离散的,以此选择适用的算法。

设置多环境层

你可以使用现成的gym.Env:

5

也可以选择天授提供的三种向量环境层:VectorEnv、SubprocVectorEnv和RayVectorEnv,如下所示:

6

示例中分别设置了8层和100层环境。

建立网络

天授支持任意用户自主定义的网络或优化器,但有接口限制。

7

以下是一个正确的示例:

8

设置策略

我们使用已定义的net和optim(有额外的策略超参数)来定义一个策略。下方我们用一个目标网络来定义DQN算法策略。

9

设置收集器

收集器是天授的关键概念,它使得策略能够高效的与不同环境交互。每一步,收集器都会将该策略的操作数据记录在一个回放缓存中。

10

训练

天授提供了训练函数onpolicy_trainer和offpolicy_trainer。当策略达到终止条件时,他们会自动停止训练。由于DQN是无策略算法,我们使用offpolicy_trainer。

11

训练器支持TensorBoard记录,方法如下:

12

将参数writer输入训练器中,训练结果会被记录在TensorBoard中。

13

记录显示,我们在几乎4秒的时间内完成了对DQN的训练。

保存/加载策略

因为我们的策略沿袭自torch.nn.Module,所以保存/加载策略方法与torch模块相同。

14

观察模型表现

收集器支持呈现功能,以35帧率观察模型方法如下:

15

用你自己的代码训练策略

如果你不想用天授提供的训练器也没问题,以下是使用自定义训练器的方法。

16

上手体验

天授需要Python3环境。以CartPole训练DQN模型为例,输入test_dqn.py代码进行训练,其结果统计如下:

17

可以看出整个训练过程用时7.36秒,与开发者给出的训练时间符合。

模型训练结果如下:

18

作者介绍

天授的开发者:翁家翌,清华大学的在读大四本科生。

高中毕业于福州一中,前NOI选手。

大二时作就作为团队主要贡献者获得了强化学习国际比赛vizdoom的冠军。他希望能将天授平台深入开发,成为强化学习平台的标杆。开源也是希望有更多的小伙伴加入这个项目。


【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/zhibo

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-04-01
本文作者:贾浩楠
本文来自:“量子位”,了解相关信息可以关注“公众号 QbitAI”

相关文章
|
3月前
|
人工智能 运维 IDE
CodeFuse 开源一周年,焕新出发!
CodeFuse 是蚂蚁集团推出的开源项目,旨在通过大型代码语言模型(Code LLMs)支持软件开发生命周期各阶段,包括设计、编码、测试、部署等。自2023年9月开源以来,CodeFuse 不断迭代,推出了一系列创新产品和技术,如 CodeFuse IDE、muAgent 2.0 框架及 CGE 和 Rodimus 模型。项目已在蚂蚁集团内部广泛应用,并在多个行业会议上展示分享。未来,CodeFuse 将继续深耕开源,推出更多创新产品,并加强社区互动与合作。欢迎访问 CodeFuse 官网和 GitHub 项目主页了解更多详情。
155 0
CodeFuse 开源一周年,焕新出发!
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
好书推荐丨人工智能B2B落地实战:基于云和Python的商用解决方案
好书推荐丨人工智能B2B落地实战:基于云和Python的商用解决方案
43 3
好书推荐丨人工智能B2B落地实战:基于云和Python的商用解决方案
|
人工智能 自然语言处理 IDE
人手一个编程助手!北大代码大模型CodeShell-7B开源,魔搭社区最佳实践来了!
CodeShell是北京大学知识计算实验室联合四川天府银行AI团队研发的多语言代码大模型基座。
|
机器学习/深度学习 人工智能 算法
这个社区可以互相交流学习AI相关的开发技术吗?自学开发AI图像算法插件一段时间,和大家分享一下经历吧,也不知道自己目前在折腾的东西有没有用。
接触AI相关快一年的时间,期间自学了一些AI图像相关的算法,然后用掌握的一些知识整了一些土枪土炮的花样,给大家献个丑,希望能在这里找到一个可以交流学习的环境。
200 3
下一篇
DataWorks