JindoFS解析 - 云上大数据高性能数据湖存储方案

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: JindoFS 是云原生的文件系统,可以提供OSS 超大容量以及本地磁盘的性能

作者:殳鑫鑫,花名辰石,阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。


2019 年云栖大会上,EMR Jindo 的技术存储分离方案得到很大的关注,视频直达链接【云上大数据的一种高性能数据湖存储方案】
【EMR打造高效云原生数据分析引擎】

JindoFS背景

计算存储分离是云计算的一种发展趋势,传统的计算存储相互融合的的架构存在一定的问题, 比如在集群扩容的时候存在计算能力和存储能力相互不匹配的问题,用户在某些情况下只需要扩容计算能力或者存储能力,传统的融合架构不能单独的扩充计算或者存储能力, 而计算存储分离可以很好的解决这个问题,用户只需要关心整个集群的计算能力。

基于OSS 计算存储分离

image

EMR 现有的计算存储分离方案是基于OSS提供兼容Hadoop文件系统的OssFS, 用户通过OssFS 可以访问OSS 上的数据, 因此OssFS 保留了OSS的一些优势,比如提供海量存储,成本低,高可靠等,同时也存在一些问题比如文件重命名操作慢, OSS 带宽限制,高频访问的数据消耗过多的OSS带宽。而JindoFS 除了可以保留上述OssFS的优势,还克服上述OssFS的问题。

JindoFS 介绍

image
JindoFS 主要包含两个服务组件:Namespace的服务以及Storage 服务,Namespace服务主要JindoFS 元数据管理以及 Storage 服务的管理, Storage 服务主要负责 用户数据的管理包含本地数据的管理和OSS上数据的管理, JindoFS是云原生的文件系统,可以提供本地存储的性能以及OSS的超大容量。下面我们分别介绍下这两个服务的主要功能。

Namespace 主要用来管理用户的元数据,这部分元数据包含JindoFS 文件系统的元数据, Block 的元数据以及 Storage 服务的元数据,JindoFS Namespace服务可以在单个集群上支持不同的Namespace, 用户可以根据不同的业务划分不同的Namespace,不同的Namespace存放不同业务数据。 此外Namespace可以设置不同存储后端现阶段主要支持RocksDB,OTS的支持预计在下个版本发布,针对Namespace的性能我们支持大量的优化,比如支持目录级别的并发控制,元数据的缓存等等。

Storage 服务主要负责实际的数据管理,本地缓存的数据管理以及OSS数据管理,可以支持不同的存储后端以及存储介质,存储后端现阶段主要支持本地文件系统以及OSS, 本地存储系统可以支持HDD/SSD/DCPM等存储介质,用以提供缓存加速,另外Storage 服务针对用户的小文件较多的场景进行优化,避免过多的小文件给本地文件系统带来过大的压力造成整体性能的下降。

此外在整个生态方面,JindoFS 支持EMR 框架的所有计算引擎,包括Hadoop, Hive, Spark, Flink, Impala, Presto 以及 HBase, 用户只要替换文件访问路径的模式为jfs就可以使用JindoFS,另外在机器学习方面下个版本JindoFS将会推出Python SDK, 方便机器学习用户可以高效率的访问JindoFS上的数据,另外JindoFS 与 EMR Spark高度集成优化,支持基于Spark的物化视图以及Cube的优化,实现秒级Adhoc的分析

JindoFS 使用模式

JindoFS Block模式

image
Block模式将JindoFS的文件切分的Block的形式存放本地磁盘以及OSS上,用户通过OSS 只能看到Block的数据,本地的Namespace服务负责管理元数据,通过本地元数据以及Block数据构建出文件数据,该模式相对与后一种模式该模式下JindoFS的性能是最佳的, Block模式适用用户对数据以及元数据都有一定的性能要求的场景,Block模式需要用户将数据迁移到JindoFS。
Block模式为用户提供不同的存储策略适配用户不同的应用场景

策略名称 策略描述 适用场景
COLD 数据只有一份存放在OSS上 主要适用冷数据存储的场景
WARM 默认策略,数据本地一份,OSS一份 本地数据提供性能加速
HOT 数据本地多份,OSS一份 针对热数据提供进一步加速功能
TEMP 数据仅有本地一个备份 针对一些零时数据存储场景

对比HDFS, JindoFS的Block 模式提供以下优势:

  • 利用OSS 的廉价和无限容量 JindoFS 提可以 OSS 优势成本以及容量的优势
  • 冷热数据自动分离,计算透明,冷热数据自动迁移的时候逻辑位置不变,无须修改表元数据 location 信息
  • 维护简单,无须 decommission,节点坏掉或者下掉就去掉,数据 OSS 上有,不会丢失
  • 系统快速升级/重启/恢复,没有 block report
  • 原生支持小文件,避免小文件过程造成文件系统过大的压力

JindoFS Cache模式

image
Cache模式将JindoFS文件以对象的形式存在OSS,用户可以通过OSS 看到原有的目录结构以及文件,该模式提供数据以及元数据的缓存加速用户的读写数据的性能,该模式下用户无需迁移数据到OSS,但是性能相对Block模式有一定的性能损失。 在元数据同步方面用户可以根据不同的需求选择不同的元数据同步策略。

对比OssFS, JindoFS的Cache模式提供以下优势:

  • 由于本地备份存在,读写吞吐与HDFS相当
  • 能够支持全部 HDFS 接口, 支持更多的场景,如Delta Lake,支持 HBase on JindoFS
  • JindoFS作为数据以及元数据的缓存, 用户在读写数据以及List/Status操作相对OssFS有性能提升
  • JindoFS作为数据缓存, 可以加速用户的数据读写

JindoFS 外部客户端

image
外部客户端提供用户在EMR 集群外访问 JindoFS的一种方式,现阶段该客户端只支持JindoFS的Block模式,客户端的权限与OSS 权限绑定,用户需要有相应OSS的权限才能够通过外部客户端访问JindoFS的数据。

JindoFS + DCPM 性能

测试环境

image

性能

下面主要JindoFS + DCPM的性能,测试主要分为三部分:Micro-benchmark, TPC-DS查询在JindoFS上的性能以及 SSB在Spark Relational Cache + JindoFS 上的性能。 其中DCPM 为Intel 傲腾数据中心级可持久化内存。
image
上图为Micro-benchmark的性能,主要测试了不同文件大小( 512K, 1M, 2M, 4M and 8M )和不同并行度(1-10)下的100个小文件读操作,从图中可以看出DCPM为小文件读带来了性能的显著提高,文件越大,并行度越高,性能提升的也更明显。

image

上图TPC-DS的测试结果,TPC-DS数据量为2TB,测试整个TPC-DS的99个查询。基于归一化时间,DCPM总体上带来了1.53倍的性能提升。
image

上图SSB在Spark Relational Cache + JindoFS 测试结果,其中SSB( 星型基准测试 )是基于TPC-H的针对星型数据库系统性能的测试基准。Relational Cache是EMR Spark支持的一个重要特性,主要通过对数据进行预组织和预计算加速数据分析,提供了类似传统数据仓库物化视图的功能。 在SSB测试中,使用1TB数据来单独执行每个查询,并在每个查询之间清除系统cache。基于归一化时间,总体上DCPM 能带来2.7倍的性能提升。对于单个query,性能提升在1.9倍至3.4倍。


相关文章推荐【JindoFS概述:云原生的大数据计算存储分离方案】


后续我们也会在云栖社区和钉钉群分享更多的 Jindo 技术干货,欢迎有兴趣的同学加入 【Apache Spark技术交流社区】进行交流和技术分享。
二维码.JPG

相关文章
|
4月前
|
存储 JSON 分布式计算
数据湖,不“唬”你:这是大数据存储的新秩序!
数据湖,不“唬”你:这是大数据存储的新秩序!
103 2
|
4月前
|
存储 分布式计算 Hadoop
Hadoop框架解析:大数据处理的核心技术
组件是对数据和方法的封装,从用户角度看是实现特定功能的独立黑盒子,能够有效完成任务。组件,也常被称作封装体,是对数据和方法的简洁封装形式。从用户的角度来看,它就像是一个实现了特定功能的黑盒子,具备输入和输出接口,能够独立完成某些任务。
|
4月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
238 0
|
4月前
|
人工智能 分布式计算 DataWorks
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
阿里云ODPS技术栈通过MaxCompute、Object Table与MaxFrame等核心组件,实现了多模态数据的高效处理与智能分析。该架构支持结构化与非结构化数据的统一管理,并深度融合AI能力,显著降低了分布式计算门槛,推动企业数字化转型。未来,其在智慧城市、数字医疗、智能制造等领域具有广泛应用前景。
461 6
多模态数据处理新趋势:阿里云ODPS技术栈深度解析与未来展望
|
6月前
|
人工智能 分布式计算 大数据
MCP、MaxFrame与大数据技术全景解析
本文介绍了 MCP 协议、MaxFrame 分布式计算框架以及大数据基础设施建设的相关内容。MCP(Model Context Protocol)是一种开源协议,旨在解决 AI 大模型与外部数据源及工具的集成问题,被比喻为大模型的“USB 接口”,通过统一交互方式降低开发复杂度。其核心架构包括 Client、Server、Tool 和 Schema 四个关键概念,并在百炼平台中得到实践应用。MaxFrame 是基于 Python 的高性能分布式计算引擎,支持多模态数据处理与 AI 集成,结合 MaxCompute 提供端到端的数据处理能力。
|
7月前
|
存储 分布式计算 大数据
数据湖——大数据存储的新思维,如何打破传统束缚?
数据湖——大数据存储的新思维,如何打破传统束缚?
316 16
|
10月前
|
存储 搜索推荐 大数据
数据大爆炸:解析大数据的起源及其对未来的启示
数据大爆炸:解析大数据的起源及其对未来的启示
656 15
数据大爆炸:解析大数据的起源及其对未来的启示
|
10月前
|
存储 分布式计算 大数据
大数据揭秘:从数据湖到数据仓库的全面解析
大数据揭秘:从数据湖到数据仓库的全面解析
325 19
|
9月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
11月前
|
存储 SQL 大数据
从数据存储到分析:构建高效开源数据湖仓解决方案
今年开源大数据迈向湖仓一体(Lake House)时代,重点介绍Open Lake解决方案。该方案基于云原生架构,兼容开源生态,提供开箱即用的数据湖仓产品。其核心优势在于统一数据管理和存储,支持实时与批处理分析,打破多计算产品的数据壁垒。通过阿里云的Data Lake Formation和Apache Paimon等技术,用户可高效搭建、管理并分析大规模数据,实现BI和AI融合,满足多样化数据分析需求。

推荐镜像

更多
  • DNS
  • 下一篇
    oss云网关配置