用户数从 0 到亿,我的 K8s 踩坑血泪史

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 作者 | 平名 阿里服务端开发技术专家导读:容器服务 Kubernetes 是目前炙手可热的云原生基础设施,作者过去一年上线了一个用户数极速增长的应用:该应用一个月内日活用户从零至四千万,用户数从零到一亿的裂变式增长,充分享受了容器服务快速简便的扩容操作和高可用特性。

g1

作者 | 平名 阿里服务端开发技术专家

导读:容器服务 Kubernetes 是目前炙手可热的云原生基础设施,作者过去一年上线了一个用户数极速增长的应用:该应用一个月内日活用户从零至四千万,用户数从零到一亿的裂变式增长,充分享受了容器服务快速简便的扩容操作和高可用特性。作者使用容器服务 Kubernetes 集群将公司内系统完全上云 1 年多,本篇文章记录了其中的踩坑与优化记录。

关注“阿里巴巴云原生”公众号,回复关键词“资料”,即可获得 2019 全年meetup 活动 PPT 合集及 K8s 最全知识图谱。

创建集群

创建集群时,做好规划,选择优化好的集群配置,可以大大减少后期运维工作,其中部分集群的配置在建立后再也没法修改或者修改极其麻烦。

集群规划

            Terway 是阿里云容器服务自研的网络插件,功能上完全兼容 Flannel,如果保守,还是使用 Flannel  

  • Pod 网络 CIDR

默认 16 的大网段,有效的网段或者其子网 10.0.0.0/8,172.16-31.0.0/12-16,192.168.0.0/16

  • Service CIDR

    • 默认 20 的网段,可选:10.0.0.0/16-24,172.16-31.0.0/16-24,192.168.0.0/16-24
    • 网段不能冲突重复,建立后没法修改;
    • 多个区域的多个交换机。
  • 公网访问 ApiServer

    • 对于线上等安全要求高的集群,可以选择不暴露 apiserver, 只有私网 SLB, 但是这样没法使用云效发布;
    • 日常预发等集群,可以暴露公网 SLB 到 apiserver, 集群建立后立即为 slb 建立访问控制,限制 slb 只能云效访问;

注: K8s 每次安全漏洞几乎都与 ApiServer 有关,对于线上 K8s 集群,要及时升级补丁,或者不开放公网 apiserver,使用严格的安全组和访问控制。

  • 安全组

    • 设置安全组限定访问范围,为 master 与 worker 机器使用。

 

  • Master 机器规划

   为了高可用,一般使用 3 节点,Master 选择规则如下:

节点数  master 规格
1-5个 4C8G
6-20个节点 4C16G
21-100个节点 8C32G
100-200个节点 16C64G

master 机器的存储建议高性能的 50-100G SSD,因为会运行 ETCD,操作系统占用不超过 8G。

  • Worker 机器规划

    • 阿里云首推神龙机器,没有神龙机器的区域,选用高配 ECS,配置规格根据部署的 POD 规格乘以一定倍数,比如 Java 应用 pod 一般选择 4C8G,ECS 则购买 32C64G 或者 64C128G 为好,设置部署的时候为 pod 设置固定的 request/limit;
    • 我们选用的机器配置:

      • 32C64G ECS
      • 存储。系统盘:100G SSD,  数据盘:400G 高效云盘
      • 操作系统:centos 7.4 64 位

集群建立与配置

建立集群时设置:

  • 通过控制台建立集群,阿里云容器服务提供的非常简易的一键部署集群功能,通过向导完成 K8S 集群的建立;
  • 按照以上规划设置 master,worker 节点,挂载 /var/lib/docker 到数据盘;
  • 设置合理的 Pod 网络 CIDR, Service CIDR ip 网段;
  • 设置合理的安全策略,是否暴露 apiserver(需要直接云效发布的,需要开放公网暴露,并做严格的访问控制);
  • ingress 选择安全,可以使用内网,如果需要公网,可以在控制台很方便建立,同时做好访问控制;
  • kube-proxy 模式,因为 iptables 模式在更新一条规则时把 iptables 锁住引发的性能问题,建议使用 IPVS 模式;
  • 节点 POD 数量,默认 128 太大,一个节点不可能部署这么多,建议改为 64;
  • 节点服务端口访问 (NodePort,SLB),可以适当扩大,默认的也一般足够用。

集群配置修改:

 

部署设置

 

无状态部署

使用无状态部署 Deployment,参考这篇文章实现分批发布
优化设置模板: 

apiVersion: apps/v1beta2
kind: Deployment
metadata:
  annotations:
    deployment.kubernetes.io/revision: '34'
# 标签,映射 service
  labels:
    app: {app_name}-aone
  name: {app_name}-aone-1
  namespace: {app_name}
spec:
  progressDeadlineSeconds: 600
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      app: {app_name}-aone
# 批量重启更新策略      
  strategy:
    rollingUpdate:
      maxSurge: 25%
      maxUnavailable: 25%
    type: RollingUpdate
  template:
    metadata:
      labels:
        app: {app_name}-aone
    spec:
      containers:
       # 环境变量增加时区
        - env:
            - name: TZ
              value: Asia/Shanghai
        - image: >-
            registry-vpc.cn-north-2-gov-1.aliyuncs.com/{namespace}/{app_name}:20190820190005
          imagePullPolicy: Always
          # 启动前执行优雅下线摘除 服务注册
          lifecycle:
            preStop:
              exec:
                command:
                  - sudo
                  - '-u'
                  - admin
                  - /home/{user_name}/{app_name}/bin/appctl.sh
                  - {app_name}
                  - stop
          # 存活检查,强烈建议设置        
          livenessProbe:
            failureThreshold: 10
            initialDelaySeconds: 30
            periodSeconds: 10
            successThreshold: 1
            tcpSocket:
              port: 5900
            timeoutSeconds: 1
          name: {app_name}-aone
          # 就绪检查,强烈建议设置
          readinessProbe:
            failureThreshold: 10
            initialDelaySeconds: 30
            periodSeconds: 10
            successThreshold: 1
            tcpSocket:
              port: 5900
            timeoutSeconds: 1
          # 资源限制,这个一定要合理设置  
          resources:
            limits:
              cpu: '4'
              memory: 8Gi
            requests:
              cpu: '4'
              memory: 8Gi
          terminationMessagePath: /dev/termination-log
          terminationMessagePolicy: File
          # 日志存放目录,映射到节点的/var/lib/docker/logs 数据盘,应用日志目录设置到/home/{user_name}/logs 下
          volumeMounts:
            - mountPath: /home/{user_name}/logs
              name: volume-1553755418538
      dnsPolicy: ClusterFirst
      ## 私有镜像仓库的密钥,从保密字段获取
      imagePullSecrets:
        - name: {app_name}-987
      restartPolicy: Always
      schedulerName: default-scheduler
      securityContext: {}
      terminationGracePeriodSeconds: 30
      # 日志存放目录,映射到节点的/var/lib/docker/logs 数据盘
      volumes:
        - hostPath:
            path: /var/lib/docker/logs/{app_name}
            type: ''
          name: volume-1553755418538

 

服务设置

因为容器服务的 Cloud Controller Manager 会同步删除 service 建立关联的 SLB,为了防止 service 配置修改误删除 slb 故障,并导致域名、安全等配置需要修改的坑,强烈建议 service 与 slb 解耦,service 采用 NodePort 的方式,slb 另外建立后端服务器指向集群节点,如果需要透传真实 IP,并考虑负载均衡,需要遵守一定的配置规则和方法,参考这个文章

NodePort:

apiVersion: v1
kind: Service
metadata:
  name: {app_name}
  namespace: {namespaces}
spec:
  clusterIP: 10.1.50.65
## 策略关系到是否透传真实 IP
  externalTrafficPolicy: Cluster
  ports:
    - name:  {app_name}-80-7001
      nodePort: 32653
      port: 80
      protocol: TCP
      targetPort: 7001
    - name:  {app_name}-5908-5908
      nodePort: 30835
      port: 5108
      protocol: TCP
      targetPort: 5108
  selector:
    app:  {app_name}
  sessionAffinity: None
  type: NodePort
status:
  loadBalancer: {}

然后在负载均衡管理页面,选择后端服务器指向集群的 worker 机器,设置端口为以上服务的端口:32653,完成配置,这样在集群 service 修改或者删除重建的时候,slb 不会被集群的 CCM 删除,不会涉及到域名,安全等配置修改。同时,可以设置一些策略,需要升级修改服务配置时,分批切流等。

总结

阿里云容器服务控制台虽然是云上新产品,提供了极其简单的一键部署功能,以及简便的控制台管理。过去一年中,笔者一路见识阿里云容器服务控制台从简陋向强大的转变过程,虽然多次踩坑,但阿里云容器服务同学认真负责和极好的服务态度让人佩服。

容器服务管理控制台还需要更多的考虑实际运维需求,并紧密结合已有的云产品,比如云效、EDAS、云监控、日志服务等,以应用为单位,提供更好服务。



扫描下方二维码添加小助手,与 8000 位云原生爱好者讨论技术趋势,实战进阶!
进群暗号:公司-岗位-城市
b8

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
存储 缓存 NoSQL
希音面试:亿级用户 日活 月活,如何统计?(史上最强 HyperLogLog 解读)
本文详细介绍了如何使用Redis的各种数据结构(如Set、Bitmap、HyperLogLog)来统计网站的日活(DAU)和月活(MAU)用户数。作者通过实际案例和代码示例,系统地讲解了这些数据结构的原理和应用场景,特别是HyperLogLog在处理亿级用户数据时的优势。文章还深入解析了HyperLogLog的数学原理和底层数据结构,帮助读者更好地理解和应用这一高效的数据统计工具。此外,文章还提供了多个相关面试题和参考资料,适合准备面试的技术人员阅读。
|
Python
三年前写的文章,阅读量暴涨了6.8万。。。
三年前写的文章,阅读量暴涨了6.8万。。。
104 0
《在业务量暴增中痛并快乐——数据交易平台的成长记事》电子版地址
在业务量暴增中痛并快乐——数据交易平台的成长记事
58 0
《在业务量暴增中痛并快乐——数据交易平台的成长记事》电子版地址
淘宝预售“买崩”程序员20分钟修复,全靠这份亿级流量并发手册
朋友们,今年双11电商大促即将到达,感受到四面八方激动的心情没有? 去年天猫淘宝在双十一中订单可是破了58.3万笔/秒,预测一波今年成交额又会打破去年记录。作为一名互联网民工,我关心的不是订单有多少,而是系统竟然没崩!以及这背后为了抗住这巨大的并发量的程序员同胞们……
|
负载均衡 NoSQL 关系型数据库
如何设计一个百万级用户的抽奖系统?,Javaweb面试总结
如何设计一个百万级用户的抽奖系统?,Javaweb面试总结
如何设计一个百万级用户的抽奖系统?,Javaweb面试总结
|
达摩院
【非广告】半年时间 90% 的收益就问你慌不慌
先说明这篇文章不包含任何广告内容,也不提供任何投资理财建议,股市有风险,投资需谨慎! 都说牛市来了,今年的 A 股的行情确实很不错,从上面的截图中可以看到阿粉的一只基金已经收益 90% 了。90% 是什么概念,反正阿粉是没有过的,估计很多人都没有经历过这种收益,所以这几天阿粉慌的一批,除了慌的很之外,另一个就是懊悔的很,当初应该多买点的,只能说人性是贪婪的。
【非广告】半年时间 90% 的收益就问你慌不慌
|
开发工具 网络虚拟化 Android开发
用盾的如果明白这一点,人气能暴涨!!
用盾的如果明白这一点,人气能暴涨!!
用盾的如果明白这一点,人气能暴涨!!
|
Web App开发 编解码 移动开发
1.5小时成交破20亿!淘系又一次稳稳扛住了大流量!
6月1日零点,2020年天猫618强劲开局。 开场刚过1小时29分,熬夜看淘宝直播的“宝宝们”带来的成交额达到20亿元,远超去年同期!
1.5小时成交破20亿!淘系又一次稳稳扛住了大流量!
陪玩平台源码开发,如何提升用户的约单体验?
陪玩平台源码开发,如何提升用户的约单体验?
|
机器学习/深度学习 供应链 算法
春节剁手的人太少?看手淘怎么做用户增长
小叽导读:本文介绍以手淘促活为目的的全链路智能投放算法框架,该框架目前接入以 Pagani 为核心的全链路运营平台,使用用户意图识别算法圈选出目标人群,借助物料智能推荐和权益动态面额等算法实现全链路上用户的个性化触达干预。以2019春节手淘促活为例,介绍权益智能投放框架的设计思路和实际应用。
1504 0
春节剁手的人太少?看手淘怎么做用户增长