Flink重启策略

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 概述Flink支持不同的重启策略,以在故障发生时控制作业如何重启集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。

概述

  • Flink支持不同的重启策略,以在故障发生时控制作业如何重启
  • 集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。
  • 如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。配置参数 restart-strategy 定义了哪个策略被使用。
  • 常用的重启:

    1.策略固定间隔 (Fixed delay)
    2.失败率 (Failure rate)
    3.无重启 (No restart)
    
  • 如果没有启用 checkpointing,则使用无重启 (no restart) 策略。如果启用了 checkpointing,但没有配置重启策略,则使用固定间隔 (fixed-delay) 策略
  • 重启策略可以在flink-conf.yaml中配置,表示全局的配置。也可以在应用代码中动态指定,会覆盖全局配置

固定间隔

第一种:全局配置 flink-conf.yaml

    restart-strategy: fixed-delay 
    restart-strategy.fixed-delay.attempts: 3 
    restart-strategy.fixed-delay.delay: 10 s

第二种:应用代码设置:

env.setRestartStrategy(RestartStrategies.fixedDelayRestart( 3,// 尝试重启的次数 
    Time.of(10, TimeUnit.SECONDS) // 间隔 ));

失败率

  • 失败率重启策略在Job失败后会重启,但是超过失败率后,Job会最终被认定失败。在两个连续的重启尝试之间,重启策略会等待一个固定的时间

下面配置是5分钟内若失败了3次则认为该job失败,重试间隔为10s

第一种:全局配置 flink-conf.yaml

    restart-strategy: failure-rate  
    restart-strategy.failure-rate.max-failures-per-interval: 3  
    restart-strategy.failure-rate.failure-rate-interval: 5 min  
    restart-strategy.failure-rate.delay: 10 s

第二种:应用代码设置

   env.setRestartStrategy(RestartStrategies.failureRateRestart(  3,//一个时间段内的最大失败次数  
Time.of(5, TimeUnit.MINUTES), // 衡量失败次数的是时间段  Time.of(10, TimeUnit.SECONDS) // 间隔  ));

无重启策略

第一种:全局配置 flink-conf.yaml

    restart-strategy: none

第二种:应用代码设置

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();     env.setRestartStrategy(RestartStrategies.noRestart());

实际代码演示

public class RestartTest {

    public static void main(String[] args) {
        //获取flink的运行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】
        env.enableCheckpointing(1000);

        // 间隔10秒 重启3次
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3,Time.seconds(10)));

        //5分钟内若失败了3次则认为该job失败,重试间隔为10s
        env.setRestartStrategy(RestartStrategies.failureRateRestart(3,Time.of(5,TimeUnit.MINUTES),Time.of(10,TimeUnit.SECONDS)));

        //不重试
        env.setRestartStrategy(RestartStrategies.noRestart());
    }//

}
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
存储 Kubernetes 调度
Flink 批作业如何在 Master 节点出错重启后恢复执行进度?
本文由阿里云研发工程师李俊睿撰写,介绍了Flink 1.20版中新引入的批作业进度恢复功能。文章涵盖背景、解决思路、使用效果及启用方法。此前,若JobMaster故障,批作业需重头开始,造成进度丢失。新功能通过将JM状态持久化至外部存储并在故障后利用这些状态恢复作业进度,避免了这一问题。使用该功能需启用集群高可用并配置相关参数。
199 7
Flink 批作业如何在 Master 节点出错重启后恢复执行进度?
|
4月前
|
SQL Prometheus 监控
实时计算 Flink版产品使用问题之作业频繁重启该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之集群重启后,所有的Jobs任务丢失,如何快速恢复
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
消息中间件 SQL Kafka
实时计算 Flink版产品使用问题之从检查点重启任务,怎么在YAML配置文件中添加检查点的路径
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
实时计算 Flink版产品使用问题之从检查点重启任务,怎么在YAML配置文件中添加检查点的路径
|
6月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之修改ddl能通过savepoint进行重启吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 缓存 Oracle
实时计算 Flink版产品使用问题之如何实现重启后直接跑最新的任务而不是根据checkpoint跑历史数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
监控 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在进行全量数据初始化时,连接器一般会采用什么策略
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL API 数据处理
实时计算 Flink版产品使用问题之如何避免集群重启后job信息和运行状态丢失
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL Java 持续交付
实时计算 Flink版产品使用问题之源数据库一直在新增表或修改表结构,需要进行相应的修改和重启,该如何简化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 存储 关系型数据库
实时计算 Flink版产品使用问题之遇到重启服务后重新执行DDL语句,该如何避免
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。