实时计算 Flink版产品使用问题之如何避免集群重启后job信息和运行状态丢失

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里一般怎么解决维表更新问题,维表数据可能比主表数据后到的情况怎么办?

Flink CDC里一般怎么解决维表更新问题,维表数据可能比主表数据后到的情况,我看官方文档有个look up hint 的功能,所以来试试怎么搞?



参考答案:

可以使用无界流模式下的异步查找(Async Lookup):

  • 使用 Temporal Table Function 或者 Async I/O API 实现异步查找。在这种模式下,Flink会在join操作时保留尚未找到匹配项的记录,并在后续周期内继续查找最新的维表数据。这种方式可以有效地处理维表数据延迟到达的问题。

look up hint是Flink CDC中的一个功能,它可以用于优化维表查询的性能。当维表数据可能比主表数据更新的情况下,使用look up hint可以告诉Flink在执行维表查询时优先从维表获取数据。这样可以在一定程度上解决维表更新问题,提高查询的准确性和性能。

使用look up hint的方法如下:

  1. 在Flink SQL中,使用WITH子句指定要使用的hint。例如:
SELECT /*+ LOOK_UP('维表别名') */ ... FROM 主表 ...
  1. 在Flink CDC的源代码中,使用TableSourceTableSink接口实现自定义的源和汇操作,并在其中使用hint方法指定要使用的hint。例如:
TableSource<MyTableData> tableSource = new MyTableSource();
TableSink<MyTableData> tableSink = new MyTableSink();
TableResult result = env.sqlUpdate(
    "SELECT /*+ LOOK_UP('维表别名') */ ... FROM 主表 ...",
    tableSource, tableSink);

需要注意的是,look up hint并不能完全解决维表更新问题,它只能在一定程度上优化查询性能。如果维表的数据更新非常频繁,或者维表的数据量非常大,可能会导致查询结果仍然不准确。在这种情况下,可能需要采取其他策略来解决维表更新问题,例如定期同步维表和主表的数据、使用版本控制机制等。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590885



问题二:Flink CDC里阿里云VVR可以接管我们自建的Flink集群吗?

Flink CDC里阿里云VVR可以接管我们自建的Flink集群吗?



参考答案:

那好像不行.如果自有集群,还是推荐dinky吧,毕竟人家有cdas。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590884



问题三:Flink CDC里我写了一个look up hint 没有生效,怎么办?

Flink CDC里我写了一个look up hint 没有生效,,flink 版本1.16 ,不知道啥原因?



参考答案:

如果你在Flink CDC中写了一个look up hint但没有生效,你可以尝试以下几种方法:

  1. 检查你的look up hint是否正确。确保你在正确的表和字段上使用了look up hint,并且hint的值是正确的。
  2. 检查你的Flink版本是否支持look up hint。Flink CDC的look up hint是在Flink 1.13版本中引入的,如果你使用的是更早的版本,可能不支持这个功能。
  3. 检查你的Flink配置。确保你的Flink配置中包含了look up hint的相关设置。例如,你需要在flink-conf.yaml文件中添加以下配置:
table.execution.arrow.max-records-per-batch: 1000
table.execution.arrow.max-records-per-stream: 1000
table.execution.arrow.max-records-per-user-buffer: 1000
table.execution.arrow.min-batch-size: 0
table.execution.arrow.min-num-rows-for-batch: 0
table.execution.arrow.min-partition-size: 0
table.execution.arrow.partition-size: 1048576
table.execution.arrow.preferred-buffer-size: 134217728
table.execution.arrow.row-based-output-format: true
table.execution.arrow.use-memory-mapped-buffers: false
table.execution.arrow.use-thread-local-buffers: false
  1. 如果以上方法都无法解决问题,你可以尝试升级你的Flink版本或者联系Flink社区寻求帮助。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590883



问题四:Flink CDC里 解决办法是不是要设置好对应的重启策略啊?

Flink CDC里就是我这边搭建的flink standolone HA(基于zk + hdfs) 的集群 重启后 上面运行的job信息都会丢失 解决办法是不是要设置好对应的重启策略和checkpoint或者savepoint来实现?



参考答案:

找个开发平台管理任务我推荐阿里云vvr。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590882



问题五:Flink CDC里mysqlcdc 源库有2张表一下子更新几万条数据 任务会挂掉 这种情况 ?

Flink CDC里mysqlcdc 源库有2张表一下子更新几万条数据 任务会挂掉 这种情况 有什么好的办法? 除了增加内存。



参考答案:

试试加上这几个debezium的配置行不行。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/590880

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1452 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
174 56
|
12天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
3月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
94 1
|
3月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
92 1
|
3月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
3月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
56 0
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版