高可用 kubernetes 集群部署实践

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
对象存储 OSS,内容安全 1000次 1年
简介: Kubernetes(k8s) 凭借着其优良的架构,灵活的扩展能力,丰富的应用编排模型,成为了容器编排领域的事实标准。越来越多的企业拥抱这一趋势,选择 k8s 作为容器化应用的基础设施,逐渐将自己的核心服务迁移到 k8s 之上。

前言

Kubernetes(k8s) 凭借着其优良的架构,灵活的扩展能力,丰富的应用编排模型,成为了容器编排领域的事实标准。越来越多的企业拥抱这一趋势,选择 k8s 作为容器化应用的基础设施,逐渐将自己的核心服务迁移到 k8s 之上。

可用性对基础设施而言至关重要。各大云计算厂商纷纷推出了高可用、可扩展的 k8s 托管服务,其中比较有代表性的有 Amazon EKSAzure Kubernetes Service (AKS)Google Kubernetes Engine阿里云容器服务 Kubernetes 版等。

虽然公有云托管的 k8s 服务百花齐放,但很多企业仍有自建集群的需求。正是这样的原因,促进了一大批出色的 k8s 集群部署方案的诞生,他们的特点如下表所示。

部署方案 特点
Kubeadm 1. 官方出品的部署工具,提供了 k8s 集群生命周期管理的领域知识。
2. 旨在成为更高级别工具的可组合构建块。
Kubespray 1. 支持在裸机和 AWS、GCE、Azure 等众多云平台上部署 k8s。
2. 基于 Ansible Playbook 定义 k8s 集群部署任务。
3. 支持大部分流行的 Linux 发行版。
Kops 1. 仅支持在 AWS、GCE 等少数云平台上部署 k8s。
2. 建立在状态同步模型上,用于 dry-run 和自动幂等性。
3. 能够自动生成 Terraform 配置。
Rancher Kubernetes Engine(RKE) 1. 著名的开源企业级容器管理平台 Rancher 提供的轻量级 k8s 安装工具。
2. 支持在裸机、虚拟机、公有云上部署和管理 k8s 集群。

上述方案中,RKE 在易用性和灵活性上占有优势。本文接下来将介绍如何通过 RKE 部署一套高可用 k8s 集群,文中使用的 RKE 版本为v0.2.2

高可用 k8s 集群架构

首先需要了解高可用 k8s 集群的架构特点,下图是官方推荐的高可用集群架构图。

k8s_arch

其核心思想是让 k8s master 节点中的各类组件具备高可用性,消除单点故障。

  • kube-apiserver - 对外暴露了 k8s API,是整个集群的访问入口。由于 apiserver 本身无状态,可以通过启动多个实例并结合负载均衡器实现高可用。
  • etcd - 用于存储 k8s 集群的网络配置和对象的状态信息,是整个集群的数据中心。可以通过启动奇数个 etcd 实例建立一个冗余的,可靠的数据存储层。
  • kube-scheduler - 为新创建的 pod 选择一个供他们运行的节点。一个集群只能有一个活跃的 kube-scheduler 实例,可以同时启动多个 kube-scheduler 并利用领导者选举功能实现高可用。
  • kube-controller-manager - 集群内部的管理控制中心。一个集群只能有一个活跃的 kube-controller-manager 实例,可以同时启动多个 kube-controller-manager 并利用领导者选举功能实现高可用。

此外,构建集群的时还需要注意下列问题。

  • 节点上 k8s 进程的可靠性。需要让 kubelet、kube-scheduler、kube-controller-manager 等进程在出现故障后能自动重启。
  • 为 worker node 中的非 pod 进程预留资源,防止他们将与 pod 争夺资源导致节点资源短缺。

使用 RKE 构建高可用 k8s 集群

节点规划

构建集群的第一步是将拥有的服务器按节点功能进行划分,下表展示了笔者环境下的节点规划情况。

IP 角色
192.168.0.10 部署节点
192.168.0.11 k8s master - api-server, etcd, scheduler, controller-manager
192.168.0.12 k8s master - api-server, etcd, scheduler, controller-manager
192.168.0.13 k8s master - api-server, etcd, scheduler, controller-manager
192.168.0.14 k8s worker - kubelet, kube-proxy
192.168.0.15 k8s worker - kubelet, kube-proxy
192.168.0.16 k8s worker - kubelet, kube-proxy
192.168.0.17 k8s worker - kubelet, kube-proxy

规划说明:

  1. 单独选择了一台机器192.168.0.10作为部署节点。如果机器数不多,可以将部署节点加入到 k8s 集群中。
  2. 为了保证可用性,择了三台机器部署 k8s master 组件。如果有条件,可以将 etcd 和 master 中的其他组件分开部署,这样可以根据需要更灵活地控制实例个数。例如,在访问压力不大但对数据可靠性要求比较高的情况下,可以专门选择 5 台机器部署 etcd,另外选择 3 台机器部署 master 中的其他组件。
  3. 剩余四台机器作为 k8s worker 节点。节点个数需要根据实际情况动态调整。当有 pod 因资源不足一直处于 pending 状态时,可以对 worker 进行扩容。当 node 的资源利用率较低时,且此 node 上存在的 pod 都能被重新调度到其他 node 上运行时,可以对 worker 进行缩容。

环境准备

在完成节点规划后,需要进行环境准备工作,主要包含以下内容:

  1. 安装 RKE - 需要在部署节点(192.168.0.10)上安装 RKE 二进制包,具体安装方法可参考 download-the-rke-binary
  2. 配置 SSH 免密登录 - 由于 RKE 通过 SSH tunnel 安装部署 k8s 集群,需要配置 RKE 所在节点到 k8s 各节点的 SSH 免密登录。如果 RKE 所在节点也需要加入到 k8s 集群中,需要配置到本机的 SSH 免密登录。
  3. 安装 docker - 由于 RKE 通过 docker 镜像rancher/hyperkube启动 k8s 组件,因此需要在 k8s 集群的各个节点(192.168.0.11 ~ 192.168.0.17 这 7 台机器)上安装 docker。
  4. 关闭 swap - k8s 1.8 开始要求关闭系统的 swap,如果不关闭,默认配置下 kubelet 将无法启动。这里需要关闭所有 k8s worker 节点的 swap。

配置 cluster.yml

在完成环境准备后,需要通过 cluster.yml 描述集群的组成和 k8s 的部署方式。

配置集群组成

配置文件 cluster.yml 中的 nodes 配置项用于描述集群的组成。根据节点规划,对于 k8s master 节点,指定其角色为controlplaneetcd。对于 k8s worker 节点,指定其角色为worker

nodes:
  - address: 192.168.0.1
    user: admin
    role:
      - controlplane
      - etcd
  ...
  - address: 192.168.0.7
    user: admin
    role:
      - worker

设置资源预留

K8s 的 worker node 除了运行 pod 类进程外,还会运行很多其他的重要进程,包括 k8s 管理进程,如 kubelet、dockerd,以及系统进程,如 systemd。这些进程对整个集群的稳定性至关重要,因此需要为他们专门预留一定的资源。

笔者环境中的 worker 设置如下:

  • 节点拥有 32 核 CPU,64Gi 内存和 100Gi 存储。
  • 为 k8s 管理进程预留了 1 核 CPU,2Gi 内存和 1Gi 存储。
  • 为系统进程预留了 1 核 CPU,1Gi 内存和 1Gi 存储。
  • 为内存资源设置了 500Mi 的驱逐阈值,为磁盘资源设置了 10% 的驱逐阈值。

在此场景下,节点可分配的 CPU 资源是 29 核,可分配的内存资源是 60.5Gi,可分配的磁盘资源是 88Gi。对于不可压缩资源,当 pod 的内存使用总量超过 60.5Gi 或者磁盘使用总量超过 88Gi 时,QoS 较低的 pod 将被优先驱逐。对于可压缩资源,如果节点上的所有进程都尽可能多的使用 CPU,则 pod 类进程加起来不会使用超过 29 核的 CPU 资源。

上述资源预留设置在 cluster.yml 中具体形式如下。

services:
  kubelet:
    extra_args:
      cgroups-per-qos: True
      cgroup-driver: cgroupfs
      kube-reserved: cpu=1,memory=2Gi,ephemeral-storage=1Gi
      kube-reserved-cgroup: /runtime.service
      system-reserved: cpu=1,memory=1Gi,ephemeral-storage=1Gi
      system-reserved-cgroup: /system.slice
      enforce-node-allocatable: pods,kube-reserved,system-reserved
      eviction-hard: memory.available<500Mi,nodefs.available<10%

关于资源预留更详细的内容可参考文章 Reserve Compute Resources for System Daemons

部署 k8s 集群

当 cluster.yml 文件配置完成后,可以通过命令rke up完成集群的部署任务。下图展示了通过 RKE 部署的 k8s 集群架构图。

rke_arch

该架构有如下特点:

  1. 集群中的各个组件均通过容器方式启动,并且设置重启策略为always。这样当他们出现故障意外退出后,能被自动拉起。
  2. Master 节点上的 kube-scheduler、kube-controller-manager 直接和本机的 API server 通信。
  3. Worker 节点上的 nginx-proxy 拥有 API server 的地址列表,负责代理 kubelet、kube-proxy 发往 API server 的请求。
  4. 为了让集群具有灾备能力,master 节点上的 etcd-rolling-snapshots 会定期保存 etcd 的快照至本地目录/opt/rke/etcd-snapshots中。

配置负载均衡器

在完成了集群部署后,可以通过 API server 访问 k8s。由于环境中启动了多个 kube-apiserver 实例以实现高可用,需要为这些实例架设一个负载均衡器。这里在192.168.0.10上部署了一台 nginx 实现了负载均衡的功能,nginx.conf 的具体配置如下。

...
stream {
    upstream apiserver {
        server 192.168.0.11:6443 weight=5 max_fails=3 fail_timeout=60s;
        server 192.168.0.12:6443 weight=5 max_fails=3 fail_timeout=60s;
        server 192.168.0.13:6443 weight=5 max_fails=3 fail_timeout=60s;
    }

    server {
        listen 6443;
        proxy_connect_timeout 1s;
        proxy_timeout 10s;
        proxy_pass apiserver;
    }
}
...

这时,通过负载均衡器提供的端口访问 API server 会出现异常Unable to connect to the server: x509: certificate is valid for xxx, not 192.168.0.10。这里需要将负载均衡器的 IP 地址或域名加入到 API server 的 PKI 证书中,可以通过 cluster.yml 中的 authentication 配置项完成此功能。

authentication:
  strategy: x509
  sans:
    - "192.168.0.10"

修改完 cluster.yml 后,运行命令rke cert-rotate

验证

在完成上述所有步骤后,可以通过命令kubectl get nodes查看节点状态。如果所有节点的状态均为 Ready,则表示集群部署成功。

NAME            STATUS    ROLES              AGE    VERSION
192.168.0.11    Ready     controlplane,etcd  1d     v1.13.5
192.168.0.12    Ready     controlplane,etcd  1d     v1.13.5
192.168.0.13    Ready     controlplane,etcd  1d     v1.13.5
192.168.0.14    Ready     worker             1d     v1.13.5
192.168.0.15    Ready     worker             1d     v1.13.5
192.168.0.16    Ready     worker             1d     v1.13.5
192.168.0.17    Ready     worker             1d     v1.13.5

总结

Rancher Kubernetes Engine(RKE)为用户屏蔽了创建 k8s 集群的复杂细节,简化了部署步骤,降低了构建门槛。对于那些有自建 k8s 集群需求的企业是一个不错的选择。

参考资料

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
16天前
|
Kubernetes 持续交付 开发者
探索并实践Kubernetes集群管理与自动化部署
探索并实践Kubernetes集群管理与自动化部署
41 4
|
9天前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
3年前的云栖大会,我们发布分布式云容器平台ACK One,随着3年的发展,很高兴看到ACK One在混合云,分布式云领域帮助到越来越多的客户,今天给大家汇报下ACK One 3年来的发展演进,以及如何帮助客户解决分布式领域多云多集群管理的挑战。
阿里云容器服务 ACK One 分布式云容器企业落地实践
|
4天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker与Kubernetes入门
【9月更文挑战第30天】在云计算的浪潮中,云原生技术正以前所未有的速度重塑着软件开发和运维领域。本文将通过深入浅出的方式,带你了解云原生的核心组件——Docker容器和Kubernetes集群,并探索它们如何助力现代应用的构建、部署和管理。从Docker的基本命令到Kubernetes的资源调度,我们将一起开启云原生技术的奇妙之旅。
|
5天前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
阿里云ACK容器服务生产级可观测体系建设实践
|
9天前
|
Cloud Native 持续交付 Docker
云原生技术入门与实践:Docker容器化部署示例
【9月更文挑战第25天】在数字化转型的浪潮下,云原生技术成为推动企业创新的重要力量。本文旨在通过浅显易懂的语言,为初学者揭示云原生技术的核心概念及其应用价值。我们将以Docker容器为例,逐步引导读者了解如何将应用程序容器化,并在云端高效运行。这不仅是对技术趋势的跟随,更是对资源利用和开发效率提升的探索。
29 4
|
1月前
|
Kubernetes 负载均衡 前端开发
二进制部署Kubernetes 1.23.15版本高可用集群实战
使用二进制文件部署Kubernetes 1.23.15版本高可用集群的详细教程,涵盖了从环境准备到网络插件部署的完整流程。
53 2
二进制部署Kubernetes 1.23.15版本高可用集群实战
|
17天前
|
Kubernetes 负载均衡 监控
深入云原生技术:Kubernetes集群部署与管理
【9月更文挑战第17天】在数字化转型的浪潮中,云原生技术以其灵活性和可扩展性成为企业新宠。本文将引导读者探索云原生的核心组件——Kubernetes,通过实际案例分析其部署与管理流程,旨在帮助技术从业者和企业决策者理解如何利用Kubernetes提升应用的可用性和性能。从基础概念到操作实践,我们将一同见证云原生技术的变革力量。
|
28天前
|
Kubernetes 监控 Cloud Native
云原生入门:Kubernetes 集群部署与管理
【8月更文挑战第38天】在数字化浪潮中,云原生技术如同翱翔的雄鹰,引领着企业飞向灵活高效的未来。本文将带你一探究竟,从Kubernetes的基础概念到实际操作,深入浅出地介绍如何在云端构建和管理你的容器化应用。我们将一步步搭建起一个小型的Kubernetes集群,并通过代码示例和图解,让你轻松掌握云原生世界的钥匙。让我们一起开启这趟技术之旅,探索云原生的秘密花园,找到那把打开创新之门的金钥匙。
|
1月前
|
Cloud Native 持续交付 Docker
云原生技术实践:Docker容器化部署教程
【9月更文挑战第4天】本文将引导你了解如何利用Docker这一云原生技术的核心工具,实现应用的容器化部署。文章不仅提供了详细的步骤和代码示例,还深入探讨了云原生技术背后的哲学,帮助你理解为何容器化在现代软件开发中变得如此重要,并指导你如何在实际操作中运用这些知识。
|
1月前
|
Kubernetes 负载均衡 应用服务中间件
kubeadm快速构建K8S1.28.1高可用集群
关于如何使用kubeadm快速构建Kubernetes 1.28.1高可用集群的详细教程。
49 2
下一篇
无影云桌面