Python3破冰人工智能,你需要掌握一些数学方法

简介: 为什么要把数学建模与当今火热的人工智能放在一起?

为什么要把数学建模与当今火热的人工智能放在一起?

首先,数学建模在字面上可以分解成数学+建模,即运用统计学、线性代数和积分学等数学知识,构建算法模型,通过模型来解决问题。数学建模往往是没有对与错,只有“更好”(better),就好像让你评价两个苹果哪个更好吃,只有好吃、不好吃或者更好吃,没有对与错。

人工智能(Artificial Intelligence, AI),你可以将其理解为是一种“黑科技”,人类通过它,让计算机能够“更好”地像人一样思考。可以说“算法模型”是人工智能的“灵魂”,没有算法模型,一切都是“水中月”“镜中花”!

因此,《Python 3破冰人工智能》将从数学建模入手,由浅入深地为读者揭开AI的神秘面纱。

image

数学建模

数学建模与人工智能

1.数学建模简介

数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。数学建模可以通俗地理解为数学+建模,即运用统计学、线性代数,积分学等数学知识,构建数学模型,通过模型解决问题。

按照传统定义,数学模型是对于一个现实对象,为了一个特定目的(实际问题),做出必要的简化假设(模型假设),根据对象的内在规律(业务逻辑、数据特征),运用适当的数学工具、计算机软件,得到的一个数学结构。

亚里士多德说,“智慧不仅仅存在于知识之中,而且还存在于应用知识的能力中”。数学建模就是对数学知识最好的应用,通过数学建模,你会发现,生活中很多有意思的事情都可以靠它来解决,其流程如图1-1所示。

▲图1-1 数学建模流程

2.人工智能简介

对于普通大众来说,可能是近些年才对其有所了解,其实人工智能在几十年以前就被学者提出并得到一定程度的发展,伴随着大数据技术的迅猛发展而被引爆。

(1)人工智能的诞生

最初的人工智能其实是20世纪30至50年代初一系列科学研究进展交汇的产物。1943年,沃伦·麦卡洛克(Warren McCulloch)和瓦尔特·皮茨(Walter Pitts)首次提出“神经网络”概念。1950年,阿兰·图灵(Alan Turing)提出了著名的“图灵测试”,即如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器则具有智能。直到如今,图灵测试仍然是人工智能的重要测试手段之一。1951年,马文·明斯基(Marvin Minsky)与他的同学一起建造了第一台神经网络机,并将其命名为 SNARC (Stochastic Neural Analog Reinforcement Calculator)。不过,这些都只是前奏,一直到1956年的达特茅斯会议,“Artificial Intelligence”(人工智能)这个词才被真正确定下来,并一直沿用至今,这也是目前AI诞生的一个标志性事件。

▲图1-2  达特茅斯会议参会者50年后聚首照[1]

[1] 达特茅斯会议参会者50年后再聚首,左起:Trenchard More、John McCarthy、Marvin Minsky、Oliver Selfridge和Ray Solomonoff(摄于2006年),图片版权归原作者所有。

在20世纪50年代,人工智能相关的许多实际应用一般是从机器的“逻辑推理能力”开始着手研究。然而对于人类来说,更高级的逻辑推理的基础是“学习能力”和“规划能力”,我们现在管它叫“强化学习”与“迁移学习”。可以想象,“逻辑推理能力”在一般人工智能系统中不能起到根本的、决定性的作用。当前,在数据、运算能力、算法模型、多元应用的共同驱动下,人工智能的定义正从用计算机模拟人类智能,演进到协助引导提升人类智能,如图1-3所示。

▲图1-3  下一代人工智能
(图片来源《新一代人工智能发展白皮书》)

(2)人工智能的概念

人工智能(Artificial Intelligence),英文缩写为AI,它是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”,也可能超过人的智能。

(3)人工智能、机器学习、深度学习

下面我们来介绍下主要与人工智能相关的几个概念,要搞清它们的关系,最直观的表述方式就是同心圆,如图1-4所示,最先出现的是理念,然后是机器学习,当机器学习繁荣之后就出现了深度学习,今天的人工智能大爆发是由深度学习驱动的。

▲图1-4  AI、机器学习、深度学习的关系

人工智能(AI)、机器学习(ML)、深度学习(DL)的关系为DL⊆ML⊆AI。

人工智能,即AI是一个宽泛的概念,人工智能的目的就是让计算机能够像人一样思考。机器学习是人工智能的分支,它是人工智能的重要核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。深度学习是机器学习研究中的一个新领域,推动了机器学习的发展,并拓展了人工智能的领域范围。甚至有观点认为,深度学习可能就是实现未来强AI的突破口。

可以把人工智能比喻成孩子大脑,机器学习是让孩子去掌握认知能力的过程,而深度学习是这个过程中很有效率的一种教学体系。

因此可以这样概括:人工智能是目的、结果;深度学习、机器学习是方法、工具。

本书讲解了人工智能、机器学习、深度学习的相关应用,它们之间的关系,常见的机器学习算法等知识,希望你通过对本书的学习,深刻理解这些概念,并可以轻而易举地给别人讲解。

3.数学建模与人工智能关系

无论是数学建模还是人工智能,其核心都是算法,最终的目的都是通过某种形式来更好地为人类服务,解决实际问题。在研究人工智能过程中需要数学建模思维,所以数学建模对于人工智能非常关键。

下面通过模拟一个场景来了解人工智能与数学建模之间的关系。

▲图1-5   AI 机器人

某患者到医院就诊,在现实生活中,医生根据病人的一系列体征与症状,判断病人患了什么病。医生会亲切地询问患者的症状,通过各种专项检查,最后进行确诊。在人工智能下,则考虑通过相应算法来实现上述过程,如德国的辅助诊断产品Ada学习了大量病例来辅助提升医生诊病的准确率。

情景①:如果用数学建模方法解决,那么就通过算法构建一个恰当的模型,也就是通过图1-1所示的数学建模流程来解决问题。

情景②:如果用人工智能方法解决,那么就要制造一个会诊断疾病的机器人。机器人如何才能精准诊断呢?这就需要利用人工智能技术手段,比如采用一个“人工智能”算法模型,可能既用了机器学习算法,也用了深度学习算法,不管怎样,最终得到的是一个可以落地的疾病预测人工智能解决方案。让其具有思考、听懂、看懂、逻辑推理与运动控制能力,如图1-5所示。

通过上面的例子可以看出,人工智能离不开数学建模。在解决一个人工智能的问题过程中,我们将模型的建立与求解进行了放大,以使其结果更加精准,如图1-6所示。

▲图1-6   AI下对数学建模的流程修正

可见,从数学建模的角度去学习人工智能不失为一种合适的方法。

image

《Python 3破冰人工智能:从入门到实战》

作者:黄海涛

编辑推荐:

  • 数学基础:从历年数学建模竞赛入手,解读人工智能中的数学方法。
  • 编程实践:100余个代码实例,全面讲解网络爬虫、数据存储与数据分析等内容。
  • 算法应用:实战案例辅以丰富图解,详尽分析人工智能算法特性及其应用场景。

本书创新性地从数学建模竞赛入手,深入浅出地讲解了人工智能领域的相关知识。本书内容基于Python 3.6,从人工智能领域的数学出发,到Python在人工智能场景下的关键模块;从网络爬虫到数据存储,再到数据分析;从机器学习到深度学习,涉及自然语言处理、机器学习、深度学习、推荐系统和知识图谱等。 

此外,本书还提供了近140个代码案例和大量图表,全面系统地阐述了算法特性,个别案例算法来自于工作经验总结,力求帮助读者学以致用。

- END -

相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
230 55
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
78 3
|
1天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
14 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
10天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
59 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
167 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
9天前
|
人工智能 安全 搜索推荐
新手指南:人工智能poe ai 怎么用?国内使用poe记住这个方法就够了!
由于国内网络限制,许多用户在尝试访问Poe AI时面临障碍。幸运的是,现在国内用户也能轻松畅玩Poe AI,告别繁琐的设置,直接开启AI创作之旅!🎉
57 13
|
28天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
1月前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
243 7
|
1月前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
205 5
|
2月前
|
算法 决策智能 Python
Python中解决TSP的方法
旅行商问题(TSP)是寻找最短路径,使旅行商能访问每个城市一次并返回起点的经典优化问题。本文介绍使用Python的`ortools`库解决TSP的方法,通过定义城市间的距离矩阵,调用库函数计算最优路径,并打印结果。此方法适用于小规模问题,对于大规模或特定需求,需深入了解算法原理及定制策略。
47 15