如何系统地自学 Python?

简介: 如何系统地自学 Python?


一开始学习计算机技术和编程会有些困难:该选择哪个编程语言?用哪个IDE?以及更重要的,为什么选它?


在我看来,编程时最重要的事是选择最适合解决问题的工具。其次是选择自己最擅长的工具。如果我告诉你你应该用C++因为它是速度最快的编程语言之一,但是你没有过任何处理内存管理或者自己设计数据结构的经验的话,那这显然不是个好主意。你在编程中可能会很挣扎并且感觉很糟糕。

而Python解决了很多这些方面的问题。它比C++运行的慢的多,但也容易写的多。作为初学者的你可能往往并不太关心程序跑的有多快,你在意的只是搞一些酷炫的玩意,同时学一点编程的基本概念。




所以你需要做的第一个决定就是学习哪个编程语言。在数百种编程语言中,为什么初学者应该学习Python?

在生活中学会不断挖掘自己的潜力。我们都是一个普通人,可能并不清楚自己到底在哪方面占有优势。所以,学着在生活中找到自己的优势,并根据优势选择一定的就业方向。

不随波逐流。不要看周围的人做什么,自己就做什么,也许别人做的并不适合你。别人的优势很可能会成为你的劣势。所以,坚定自己的想法,让自己知道那些方面适合自己,自己可以胜任。

不断尝试可能成为自己的优势。你不知道什么适合自己,所以才要大胆、勇敢地尝试。找到一种可以属于你的独特的优势。

坚定信念。一旦你坚定了自己的信念,就不要被别人的意见或是讽刺或是嘲笑所干扰。别人不是你,不懂的你在想什么,不清楚你开始这件事的源头。你的事情,不了解你的人,没有资格轻易评说。

不茫然,不多想。别让太多的事干扰到你奋斗下去的信念。梦想不容许太多的杂念。那些杂念只会让你的心愈来愈脆弱,多为一个人考虑,到头来,伤害的还是自己。

择自己学习方法

每个人都有适合自己的方法,有的人去选择自学,有的人选择看视频学习,有的人选择报名培训班,那在这个时候,你就要自己考虑清楚,到底那样对的帮助是最大的,个人觉得是跟着培训班最好的,毕竟人家的实战项目多,我们学软件开发的都知道实战项目对于学好一门语言是 很重要的。

学习python有那些误区

具体里面的误区非常的多,那些就不需要我去写出来,我给你说的一般都是心态的问题,首先一个觉得自己会java和c++,然后我学习python就很牛,但是你要知道语言是有很多相同的地方,但是不是通用,一定要自己学习的仔细。还有一种就是觉得我不会英语,我要先去把英语学习好在来学python。因为自己想还坏主意然后学习,这样的都是容易找进误区的。




学习是对自己最好的投资,而机会属于有准备的人,这是一个看脸的时代,但最终拼的是实力。人和人之间的差距不在于智商,而在于如何利用业余时间,所以没有等出来的辉煌,只有干出来的精彩。其实只要你想学习,什么时候开始都不晚,不要担心这担心那,你只需努力,剩下的交给时间,而你之所以还没有变强,只因你还不够努力,要记得付出不亚于任何人的努力。

1、选择Python版本

对于Python工程师来说,Python的版本则是你们的工作环境。所以在学习之前一定要考虑选择一个合适自己的版本,Python3对零基础的小白很友好,易上手。选好版本后就可以开始学习了。

2、学习Python基础知

Python 是一个有条理的、强大的面向对象的程序设计语言。

首先需要学习Python的基础知识,下载、安装、导入库、字符串处理、函数使用等等。

如果你的英语不是很好,这里可以给你推荐一个超赞的网站一译中文文档,这里会提供Python、pandas、numpy、NLTk、Django等文档的中文翻译,赶紧添加到收藏夹里。如果你更喜欢看视频,可以上网找一些入门教程观看,有很多IT学习网站可以找到,这里就不推荐了。

此外,在基础知识都学会之后,你要开始练习写一个程序,需要文本编辑器——PythonEditors

3、确定学习方向

Python职业学习方向很多,职业方向大体上分为以下六个:

Web全栈工程师、爬虫开发工程师、人工智能工程师、Python开发工程师、游戏开发工程师、搜索引擎工程师。

以下选了几个标准库是学习Python用得上且必须了解的:

Django**、Flask**、Tornado**、NumPy**、Pandas**、Matplotlib**、Requests**、Scrapy**、threading**、scikit-learn**、TensorFlow**

4、寻找项目练手

只会埋头敲代码的Python开发肯定不是各大公司HR抢着要的,谨记:多找项目多找项目!多练手多练手!只有自己多动手写具体项目,才能更多的犯错,解决问题,位置后工作踩坑,现在练习踩的坑越多,以后和HR谈薪资的时候才会更有底气。

Github内的项目丰富,想找哪个项目可以先去Github上面搜索,例如:你想写一个知乎爬虫,在搜索框搜索“知乎”,然后在语言那一栏里选择Python就可以找到你想要的项目了。

最后,等这些都学的差不多了,你就可以去找工作了。

相关文章
|
27天前
|
机器学习/深度学习 传感器 存储
使用 Python 实现智能地震预警系统
使用 Python 实现智能地震预警系统
114 61
|
11天前
|
弹性计算 数据管理 数据库
从零开始构建员工管理系统:Python与SQLite3的完美结合
本文介绍如何使用Python和Tkinter构建一个图形界面的员工管理系统(EMS)。系统包括数据库设计、核心功能实现和图形用户界面创建。主要功能有查询、添加、删除员工信息及统计员工数量。通过本文,你将学会如何结合SQLite数据库进行数据管理,并使用Tkinter创建友好的用户界面。
从零开始构建员工管理系统:Python与SQLite3的完美结合
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
66 6
|
19天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现智能生态系统监测与保护的深度学习模型
使用Python实现智能生态系统监测与保护的深度学习模型
56 4
|
1月前
|
Python
Python实现系统基础信息
Python实现系统基础信息
32 0
|
3月前
|
前端开发 JavaScript 关系型数据库
基于Python+Vue开发的电影订票管理系统
该项目是基于Python+Vue开发的电影订票管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的电影订票管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
29 1
|
3月前
|
数据采集 数据可视化 关系型数据库
【优秀python web设计】基于Python flask的猫眼电影可视化系统,可视化用echart,前端Layui,数据库用MySQL,包括爬虫
本文介绍了一个基于Python Flask框架、MySQL数据库和Layui前端框架的猫眼电影数据采集分析与可视化系统,该系统通过爬虫技术采集电影数据,利用数据分析库进行处理,并使用Echart进行数据的可视化展示,以提供全面、准确的电影市场分析结果。
124 4
|
3月前
|
存储 数据采集 数据可视化
基于Python flask+MySQL+echart的电影数据分析可视化系统
该博客文章介绍了一个基于Python Flask框架、MySQL数据库和ECharts库构建的电影数据分析可视化系统,系统功能包括猫眼电影数据的爬取、存储、展示以及电影评价词云图的生成。
109 1