sqoop将mysql数据导入hbase、hive的常见异常处理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: sqoop将mysql数据导入hbase、hive的常见异常处理一、需求:1、将以下这张表(test_goods[id,goods_name,goods_price])数据导入Hbase由此,编写如下sqoop导入命令sqoop import -D sqoop.

sqoop将mysql数据导入hbase、hive的常见异常处理
一、需求:
1、将以下这张表(test_goods[id,goods_name,goods_price])数据导入Hbase

由此,编写如下sqoop导入命令

sqoop import -D sqoop.hbase.add.row.key=true --connect jdbc:mysql://192.168.1.9/spider --username root --password root --table test_goods --hbase-create-table --hbase-table t_goods --column-family cf --hbase-row-key id -m 1
一切看着都很正常,接下来开始执行命令,报如下错误:

Error during import: No primary key could be found for table *

报错原因就是指定的mysql表名不是大写,所以mysql表名必须大写

Could not insert row with null value for row-key column

报错原因是没有指定mysql的列名,所以必须指定列名,并且hbase-row-key id 中的id,必须在–columns中显示。 --columns ID,GOODS_NAME, GOODS_PRICE

Error parsing arguments for import Unrecognized argument

报错原因是在指定mysql的列名时,用逗号隔开的时候我多加了空格,所以在
Columns后显示的列名只能用逗号隔开,不要带空格

将以上三个问题排除后:我的最新导入命令变为如下:

sqoop import -D sqoop.hbase.add.row.key=true --connect jdbc:mysql://192.168.1.9:3306/spider --username root --password root --table TEST_GOODS --columns ID,GOODS_NAME,GOODS_PRICE --hbase-create-table --hbase-table t_goods --column-family cf --hbase-row-key ID --where "ID >= 5" -m 1
注意:这里有个小问题:记得将id>=5引起来,ok,查看hbase,数据已经成功导入!!!

2、将导入命令写成一个脚本来执行(通过sqoop –options-file xxx.file 执行导入命令)
错误写法如下:

import
-D sqoop.hbase.add.row.key=true
--connect jdbc:mysql://192.168.1.9:3306/spider
--username root
--password root
--table TEST_GOODS
--columns ID,GOODS_NAME,GOODS_PRICE
--hbase-create-table
--hbase-table test_goods
--column-family cf
--hbase-row-key ID
--where "ID >= 5"
-m 1
错误原因:参数的名称和参数的值没有进行回车换行

正确写法:

import
-D
sqoop.hbase.add.row.key=true
--connect
jdbc:mysql://192.168.1.9:3306/spider
--username
root
--password
root
--table
TEST_GOODS
--columns
ID,GOODS_NAME,GOODS_PRICE
--hbase-create-table
--hbase-table
tt_goods
--column-family
cf
--hbase-row-key
ID
--where
ID>=5
-m
1
注:参数含义解释

-D sqoop.hbase.add.row.key=true 是否将rowkey相关字段写入列族中,默认为false,默认情况下你将在列族中看不到任何row key中的字段。注意,该参数必须放在import之后。
--connect 数据库连接字符串
--username –password mysql数据库的用户名密码
--table Test_Goods表名,注意大写
--hbase-create-table 如果hbase中该表不存在则创建
--hbase-table 对应的hbase表名
--hbase-row-key hbase表中的rowkey,注意格式
--column-family hbase表的列族
--where 导入是mysql表的where条件,写法和sql中一样
--split-by CREATE_TIME 默认情况下sqoop使用4个并发执行任务,需要制订split的列,如果不想使用并发,可以用参数 --m 1
二、定时增量导入
1、Sqoop增量导入
sqoop import -D sqoop.hbase.add.row.key=true --connect jdbc:mysql://192.168.1.9:3306/spider --username root --password root --table TEST_GOODS --columns ID,GOODS_NAME,GOODS_PRICE --hbase-create-table --hbase-table t_goods --column-family cf --hbase-row-key ID --incremental lastmodified --check-column U_DATE --last-value '2017-06-27' --split-by U_DATE

--incremental lastmodified 增量导入支持两种模式 append 递增的列;lastmodified时间戳。
--check-column 增量导入时参考的列
--last-value 最小值,这个例子中表示导入2017-06-27到今天的值
2、Sqoop job
sqoop job --create testjob01 --import --connect jdbc:mysql://192.168.1.9:3306/spider --username root --password root --table TEST_GOODS --columns ID,GOODS_NAME,GOODS_PRICE --hbase-create-table --hbase-table t_goods --column-family cf --hbase-row-key ID -m 1
设置定时执行以上sqoop job
使用linux定时器:crontab -e
例如每天执行

0 0 * /opt/local/sqoop-1.4.6/bin/sqoop job ….
--exec testjob01
三、数据从mysql导入hive中后,出现数据不一致情况
我们运行hadoop fs -cat /user/hadoop/student/part-m-00000,可以看到原来字段与字段之间都用‘,’分隔开,这是sqoop默认的,这时候,如果一个字段值当中包含‘,’,再向hive中插入数据时分隔就会出错。因为hive也是用‘,’分隔的。

解决方法:建议用‘001'来进行sqoop 导入数据时的 分割。也就是--fields-terminated-by 参数。
例子:

sqoop import --connect "jdbc:oracle:thin:@//localhost:1521/student" --password "" --username "" --query "select * from student where name='zhangsan' and class_id='003' and $CONDITIONS" --target-dir "/user/hadoop/student" --fields-terminated-by "001" --verbose -m 1
四、总结
这些只是工作中一些小问题的解决,希望对大家有所帮助~~
原文出处https://www.cnblogs.com/baixianlong/p/10700700.html

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
11天前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
91 4
|
20天前
|
关系型数据库 MySQL 数据库
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
|
14天前
|
SQL 存储 缓存
MySQL是如何保证数据不丢失的?
文章详细阐述了InnoDB存储引擎中Buffer Pool与DML操作的关系。在执行插入、更新或删除操作时,InnoDB为了减少磁盘I/O,会在Buffer Pool中缓存数据页进行操作,随后将更新后的“脏页”刷新至磁盘。为防止服务宕机导致数据丢失,InnoDB采用了日志先行(WAL)机制,通过将DML操作记录为Redo Log并异步刷新到磁盘,结合双写机制和合理的日志刷新策略,确保数据的持久性和一致性。尽管如此,仍需合理配置参数以平衡性能与数据安全性。
MySQL是如何保证数据不丢失的?
|
16天前
|
关系型数据库 MySQL 大数据
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
|
12天前
|
存储 关系型数据库 MySQL
|
12天前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
72 0
|
20天前
|
SQL 关系型数据库 MySQL
mysql误删数据后,你会怎么办?
mysql误删数据后,你会怎么办?
40 0
|
22天前
|
Kubernetes 关系型数据库 MySQL
k8s练习--通过NFS+PV+PVC+POD,部署一个MySQL服务,并将MySQL的数据进行持久化存储
本文档介绍了如何使用Kubernetes (K8s)、NFS、PersistentVolume (PV)、PersistentVolumeClaim (PVC)和Pod来部署并实现MySQL服务的数据持久化存储。Kubernetes是一个用于自动化部署、扩展和管理容器化应用的强大平台。NFS作为一种网络文件系统协议,能够使Kubernetes集群中的Pod跨节点访问共享文件。PV和PVC机制则提供了持久化的存储解决方案,确保数据即使在Pod生命周期结束后仍得以保留。
|
22天前
|
SQL 关系型数据库 MySQL
mysql不等于<>取特定值反向条件的时候字段有null值或空值读取不到数据
对于数据库开发的专业人士来说,理解NULL的特性并知道如何正确地在查询中处理它们是非常重要的。以上所介绍的技巧和实例可以帮助你更精准地执行数据库查询,并确保数据的完整性和准确性。在编写代码和设计数据库结构时,牢记这些细节将有助于你避免许多常见的错误,提高数据库应用的质量与性能。
31 0
|
23天前
|
关系型数据库 MySQL Windows
MySQL数据导入:MySQL 导入 Excel 文件.md
MySQL数据导入:MySQL 导入 Excel 文件.md

热门文章

最新文章