开发者社区> 皇侯爷> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

阿里JAVA手册之MySQL数据库 (建表规约、索引规约、SQL语句、ORM映射)

简介: 码出高效、码出质量。 代码的字里行间流淌的是软件生命中的血液,质量的提升是尽可能少踩坑,杜绝踩重复的坑,切实提升质量意识。另外,现代软件架构都需要协同开发完成,高效协作即降低协同成本,提升沟通效率,所谓无规矩不成方圆,无规范不能协作。
+关注继续查看

码出高效、码出质量。

代码的字里行间流淌的是软件生命中的血液,质量的提升是尽可能少踩坑,杜绝踩重复的坑,切实提升质量意识。另外,现代软件架构都需要协同开发完成,高效协作即降低协同成本,提升沟通效率,所谓无规矩不成方圆,无规范不能协作。众所周知,制订交通法规表面上是要限制行车权,实际上是保障公众的人身安全。试想如果没有限速,没有红绿灯,谁还敢上路行驶。对软件来说,适当的规范和标准绝不是消灭代码内容的创造性、优雅性,而是限制过度个性化,以一种普遍认可的统一方式一起做事,提升协作效率。

MySQL数据库

(一) 建表规约

1. 【强制】表达是与否概念的字段,必须使用is_xxx的方式命名,数据类型是unsigned tinyint( 1表示是,0表示否)。 说明:任何字段如果为非负数,必须是unsigned。

    正例:表达逻辑删除的字段名is_deleted,1表示删除,0表示未删除。

   【点评】规则存疑,更愿意用类似deletedflag这样的字段,便于扩展数据类型用【unsigned tinyint】,遵循

2. 【强制】表名、字段名必须使用小写字母或数字,禁止出现数字开头,禁止两个下划线中间只出现数字。数据库字段名的修改代价很大,因为无法进行预发布,所以字段名称需要慎重考虑。

   正例:getter_admin,task_config,level3_name

   反例:GetterAdmin,taskConfig,level_3_name

  【点评】规则好,严格遵循

3.【强制】表名不使用复数名词。

说明:表名应该仅仅表示表里面的实体内容,不应该表示实体数量,对应于DO类名也是单数形式,符合表达习惯。

  【点评】规则好,严格遵循

4.【强制】禁用保留字,如desc、range、match、delayed等,请参考MySQL官方保留字。

 【点评】规则好,严格遵循

5. 【强制】主键索引名为pk_字段名;唯一索引名为uk_字段名;普通索引名则为idx_字段名。 说明:pk_ 即primary key;uk_ 即 unique key;idx_ 即index的简称。

  【点评】规则好,严格遵循

6. 【强制】小数类型为decimal,禁止使用float和double。 说明:float和double在存储的时候,存在精度损失的问题,很可能在值的比较时,得到不正确的结果。如果存储的数据范围超过decimal的范围,建议将数据拆成整数和小数分开存储。

 【点评】规则好,严格遵循

7. 【强制】如果存储的字符串长度几乎相等,使用char定长字符串类型。

 【点评】规则好,严格遵循

8. 【强制】varchar是可变长字符串,不预先分配存储空间,长度不要超过5000,

     如果存储长度大于5000,定义字段类型为text,独立出来一张表,用主键来对应,避免影响其它字段索引效率。

    【点评】规则好,严格遵循

9. 【强制】表必备三字段:id, gmt_create, gmt_modified。

     说明:其中id必为主键,类型为unsigned bigint、单表时自增、步长为1。gmt_create, gmt_modified的类型均为date_time类型。

   【点评】规则好,严格遵循 ,更喜欢用create_time和modify_time

10.【推荐】表的命名最好是加上“业务名称_表的作用”。

     正例:tiger_task / tiger_reader / mpp_config

   【点评】规则好,严格遵循

11.【推荐】库名与应用名称尽量一致。

  【点评】规则好,严格遵循

12.【推荐】如果修改字段含义或对字段表示的状态追加时,需要及时更新字段注释。

  【点评】规则好,严格遵循

13.【推荐】字段允许适当冗余,以提高查询性能,但必须考虑数据一致。冗余字段应遵循:

   1)不是频繁修改的字段。

   2)不是varchar超长字段,更不能是text字段。

   正例:商品类目名称使用频率高,字段长度短,名称基本一成不变,可在相关联的表中冗余存储类目名称,避免关联查询。

   【点评】规则好,严格遵循

14.【推荐】单表行数超过500万行或者单表容量超过2GB,才推荐进行分库分表。

   说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。

   【点评】规则好,严格遵循

15.【参考】合适的字符存储长度,不但节约数据库表空间、节约索引存储,更重要的是提升检索速度。

   正例:如下表,其中无符号值可以避免误存负数,且扩大了表示范围。

  

对象

年龄区间

类型

表示范围

 

150岁之内

unsigned tinyint

无符号值:0到255

数百岁

unsigned smallint

无符号值:0到65535

恐龙化石

数千万年

unsigned int

无符号值:0到约42.9亿

太阳

约50亿年

unsigned bigint

无符号值:0到约10的19次方

 

【点评】规则好,严格遵循

(二) 索引规约

  1.【强制】业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引。

   说明:不要以为唯一索引影响了insert速度,这个速度损耗可以忽略,但提高查找速度是明显的;

   另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。

  【点评】规则好,严格遵循

 2. 【强制】 超过三个表禁止join。需要join的字段,数据类型必须绝对一致;多表关联查询时,保证被关联的字段需要有索引。

   说明:即使双表join也要注意表索引、SQL性能。

  【点评】规则好,严格遵循

 3. 【强制】在varchar字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度即可。

说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为20的索引,区分度会高达90%以上,

   可以使用count(distinct left(列名, 索引长度))/count(*)的区分度来确定。

   【点评】规则好,严格遵循

4. 【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。

   说明:索引文件具有B-Tree的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。

   【点评】规则好,严格遵循

5. 【推荐】如果有order by的场景,请注意利用索引的有序性。

  order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort的情况,影响查询性能。

  正例:where a=? and b=? order by c; 索引:a_b_c

  反例:索引中有范围查找,那么索引有序性无法利用,如:WHERE a>10 ORDER BY b; 索引a_b无法排序。

   【点评】规则好,严格遵循

6. 【推荐】利用覆盖索引来进行查询操作,避免回表。

 说明:如果一本书需要知道第11章是什么标题,会翻开第11章对应的那一页吗?目录浏览一下就好,这个目录就是起到覆盖索引的作用。

   正例:能够建立索引的种类:主键索引、唯一索引、普通索引,而覆盖索引是一种查询的一种效果,用explain的结果,extra列会出现:using index。

   【点评】规则好,严格遵循

         参考:http://www.cnblogs.com/zl0372/articles/mysql_32.html

               话说有这么一个表:

     

                   复制代码

                   CREATE TABLE `user_group` (

                     `id` int(11) NOT NULL auto_increment,

                     `uid` int(11) NOT NULL,

                     `group_id` int(11) NOT NULL,

                     PRIMARY KEY  (`id`),

                     KEY `uid` (`uid`),

                     KEY `group_id` (`group_id`),

                   ) ENGINE=InnoDB AUTO_INCREMENT=750366 DEFAULT CHARSET=utf8

 

                   复制代码

                   看AUTO_INCREMENT就知道数据并不多,75万条。然后是一条简单的查询:

                   SELECT SQL_NO_CACHE uid FROM user_group WHERE group_id = 245;

                   很简单对不对?怪异的地方在于:

                   如果换成MyISAM做存储引擎的时候,查询耗时只需要0.01s,用InnoDB却会是0.15s左右

如果只是就这么点差距其实不是什么大不了的事,但是真实的业务需求比这个复杂,造成的差距也很大:MyISAM只需要0.12s,InnoDB则需要2.2s.,最终定位到问题症结是在这条SQL。

          Explain的结果是:

                   +----+-------------+------------+------+---------------+----------+---------+-------+------+-------+

                   | id | select_type | table      | type | possible_keys | key      | key_len | ref   | rows | Extra |

                   +----+-------------+------------+------+---------------+----------+---------+-------+------+-------+

                   |  1 | SIMPLE      | user_group | ref  | group_id      | group_id | 4       | const | 5544 |       |

                   +----+-------------+------------+------+---------------+----------+---------+-------+------+-------+

 

                     看起来已经用上索引了,而这条SQL语句已经简单到让我无法再优化了。最后请前同事Gaston诊断了一下,他认为:数据分布上,group_id相同的比较多,uid散列的比较均匀,加索引的效果一般,但是还是建议我试着加了一个多列索引:

                     ALTER TABLE user_group ADD INDEX group_id_uid (group_id, uid);

                     然后,不可思议的事情发生了……这句SQL查询的性能发生了巨大的提升,居然已经可以跑到0.00s左右了。经过优化的SQL再结合真实的业务需求,也从之前2.2s下降到0.05s。

                   再Explain一次:

                   +----+-------------+------------+------+-----------------------+--------------+---------+-------+------+-------------+

                   | id | select_type | table      | type | possible_keys         | key          | key_len | ref   | rows | Extra       |

                   +----+-------------+------------+------+-----------------------+--------------+---------+-------+------+-------------+

                   |  1 | SIMPLE      | user_group | ref  | group_id,group_id_uid | group_id_uid | 4       | const | 5378 | Using index |

                   +----+-------------+------------+------+-----------------------+--------------+---------+-------+------+-------------+

原来是这种叫覆盖索引(covering index),MySQL只需要通过索引就可以返回查询所需要的数据,而不必在查到索引之后再去查询数据,所以那是相当的快!!但是同时也要求所查询的字段必须被索引所覆盖到,在Explain的时候,输出的Extra信息中如果有“Using Index”,就表示这条查询使用了覆盖索引。

不过,还有一个无法解释的问题就是,不用覆盖索引的情况下,为什么用MyISAM就快那么多,而InnoDB就慢这么多呢?

7. 【推荐】利用延迟关联或者子查询优化超多分页场景。

    说明:MySQL并不是跳过offset行,而是取offset+N行,然后返回放弃前offset行,返回N行,那当offset特别大的时候,效率就非常的低下,

     要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。

    正例:先快速定位需要获取的id段,然后再关联: SELECT a.* FROM 表1 a, (select id from 表1 where 条件 LIMIT 100000,20 ) b where a.id=b.id

   【点评】规则好,严格遵循

8. 【推荐】 SQL性能优化的目标:至少要达到 range 级别,要求是ref级别,如果可以是consts最好。

   说明:1)consts 单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。

           2)  ref 指的是使用普通的索引(normal index)。

           3)range 对索引进行范围检索。

    反例:explain表的结果,type=index,索引物理文件全扫描,速度非常慢,这个index级别比较range还低,与全表扫描是小巫见大巫。

   【点评】规则好,严格遵循

9. 【推荐】建组合索引的时候,区分度最高的在最左边。

    正例:如果where a=? and b=? ,a列的几乎接近于唯一值,那么只需要单建idx_a索引即可。

   说明:存在非等号和等号混合判断条件时,在建索引时,请把等号条件的列前置。

   如:where a>? and b=? 那么即使a的区分度更高,也必须把b放在索引的最前列。

   【点评】规则好,严格遵循

10. 【推荐】防止因字段类型不同造成的隐式转换,导致索引失效。

    【点评】规则好,严格遵循

11. 【参考】创建索引时避免有如下极端误解:

    1)宁滥勿缺。误认为一个查询就需要建一个索引。

    2)宁缺勿滥。误认为索引会消耗空间、严重拖慢更新和新增速度。

    3)抵制惟一索引。误认为业务的惟一性一律需要在应用层通过“先查后插”方式解决。

   【点评】规则好,严格遵循

(三) SQL语句

1. 【强制】不要使用count(列名)或count(常量)来替代count(*),count(*)是SQL92定义的标准统计行数的语法,跟数据库无关,跟NULL和非NULL无关。

说明:count(*)会统计值为NULL的行,而count(列名)不会统计此列为NULL值的行。

   【点评】规则好,严格遵循       

2. 【强制】count(distinct col) 计算该列除NULL之外的不重复行数,

  注意 count(distinct col1, col2) 如果其中一列全为NULL,那么即使另一列有不同的值,也返回为0。

   【点评】规则好,严格遵循

3.【强制】当某一列的值全是NULL时,count(col)的返回结果为0,但sum(col)的返回结果为NULL,因此使用sum()时需注意NPE问题。

正例:可以使用如下方式来避免sum的NPE问题:SELECT IF(ISNULL(SUM(g)),0,SUM(g)) FROM table;

   【点评】规则好,严格遵循

4. 【强制】使用ISNULL()来判断是否为NULL值。注意:NULL与任何值的直接比较都为NULL。

    说明: 1) NULL<>NULL的返回结果是NULL,而不是false。

             2) NULL=NULL的返回结果是NULL,而不是true。

             3) NULL<>1的返回结果是NULL,而不是true。

   【点评】规则好,严格遵循

5. 【强制】 在代码中写分页查询逻辑时,若count为0应直接返回,避免执行后面的分页语句。

   【点评】规则好,严格遵循

6. 【强制】不得使用外键与级联,一切外键概念必须在应用层解决。

    说明:(概念解释)学生表中的student_id是主键,那么成绩表中的student_id则为外键。

   如果更新学生表中的student_id,同时触发成绩表中的student_id更新,则为级联更新。

   外键与级联更新适用于单机低并发,不适合分布式、高并发集群;

   级联更新是强阻塞,存在数据库更新风暴的风险;外键影响数据库的插入速度。

   【点评】规则好,严格遵循

7. 【强制】禁止使用存储过程,存储过程难以调试和扩展,更没有移植性。

   【点评】规则好,严格遵循

8. 【强制】数据订正时,删除和修改记录时,要先select,避免出现误删除,确认无误才能执行更新语句。

   【点评】规则好,严格遵循

9. 【推荐】in操作能避免则避免,若实在避免不了,需要仔细评估in后边的集合元素数量,控制在1000个之内。

   【点评】规则好,严格遵循

10. 【参考】如果有全球化需要,所有的字符存储与表示,均以utf-8编码,注意字符统计函数的区别。

说明: SELECT LENGTH("轻松工作"); 返回为12;

 SELECT CHARACTER_LENGTH("轻松工作"); 返回为4

   如果要使用表情,那么使用utfmb4来进行存储,注意它与utf-8编码的区别。

  【点评】规则好,严格遵循

11. 【参考】 TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少,但TRUNCATE无事务且不触发trigger,有可能造成事故,故不建议在开发代码中使用此语句。

  说明:TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE 语句相同。

   【点评】规则好,严格遵循

(四) ORM映射

1. 【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。

    说明:1)增加查询分析器解析成本。

            2)增减字段容易与resultMap配置不一致。

   【点评】规则好,严格遵循

2. 【强制】POJO类的布尔属性不能加is,而数据库字段必须加is_,要求在resultMap中进行字段与属性之间的映射。

    说明:参见定义POJO类以及数据库字段定义规定,在<resultMap>中增加映射,是必须的。

         在MyBatis Generator生成的代码中,需要进行对应的修改。

   【点评】规则存疑,用flag结尾字段

3. 【强制】不要用resultClass当返回参数,即使所有类属性名与数据库字段一一对应,也需要定义;

    反过来,每一个表也必然有一个与之对应。 说明:配置映射关系,使字段与DO类解耦,方便维护。

    【点评】规则好,严格遵循

4. 【强制】sql.xml配置参数使用:#{},#param# 不要使用${} 此种方式容易出现SQL注入。

    【点评】规则好,严格遵循

5. 【强制】iBATIS自带的queryForList(String statementName,int start,int size)不推荐使用。

     说明:其实现方式是在数据库取到statementName对应的SQL语句的所有记录,再通过subList取start,size的子集合。

     正例:Map<String, Object> map = new HashMap<String, Object>();

           map.put("start", start);

           map.put("size", size);

   【点评】规则好,严格遵循  

6. 【强制】不允许直接拿HashMap与Hashtable作为查询结果集的输出。

    说明:resultClass=”Hashtable”,会置入字段名和属性值,但是值的类型不可控。

   【点评】规则好,严格遵循  

7. 【强制】更新数据表记录时,必须同时更新记录对应的gmt_modified字段值为当前时间。

   【点评】规则好,严格遵循  

8. 【推荐】不要写一个大而全的数据更新接口,传入为POJO类,不管是不是自己的目标更新字段,都进行update table set c1=value1,c2=value2,c3=value3;

    这是不对的。执行SQL时,不要更新无改动的字段,

         一是易出错;

         二是效率低;

         三是增加binlog存储。

         【点评】规则好,严格遵循

9. 【参考】@Transactional事务不要滥用。

    事务会影响数据库的QPS,

         另外使用事务的地方需要考虑各方面的回滚方案,包括缓存回滚、搜索引擎回滚、消息补偿、统计修正等。

         【点评】规则好,严格遵循

10.【参考】<isEqual>中的compareValue是与属性值对比的常量,一般是数字,表示相等时带上此条件;

         <isNotEmpty>表示不为空且不为null时执行;<isNotNull>表示不为null值时执行。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
java并发编程笔记--PriorityBlockingQueue实现
    PriorityBlockingQueue可以理解为线程安全的PriorityQueue,其实现原理与PriorityQueue类似,在此基础上实现了BlockingQueue接口,能够作为阻塞队列使用,由于PriorityBlockingQueue是无界队列,因而使用put方法并不会阻塞,offer方法不会返回false。
4757 0
[2]十道算法题【Java实现】
前言 清明不小心就拖了两天没更了~~ 这是十道算法题的第二篇了~上一篇回顾:十道简单算法题 最近在回顾以前使用C写过的数据结构和算法的东西,发现自己的算法和数据结构是真的薄弱,现在用Java改写一下,重温一下。
1099 0
腾讯2017秋招笔试编程题--游戏任务标记 java 实现+ c 实现
时间限制:1秒 空间限制:32768K 游戏里面有很多各式各样的任务,其中有一种任务玩家只能做一次,这类任务一共有1024个,任务ID范围[1,1024]。
1213 0
如何通过java程序来实现多线程的程序呢?
如何通过java程序来实现多线程的程序呢? * * 如何通过java程序来实现多线程的程序呢? * 由于线程是依赖进程而存在的,所以我们应该先创建一个进程出来。 * 而进程是由系统创建的,所以我们应该去调用系统功能创建一个进程。
859 0
Java动态代理之JDK实现和CGlib实现(简单易懂)
转自:https://www.cnblogs.com/ygj0930/p/6542259.html
820 0
【LeetCode-面试算法经典-Java实现】【111-Minimum Depth of Binary Tree(二叉树的最小深度)】
原题   Given a binary tree, find its minimum depth.   The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.  题目大意   给定一棵两叉树求树的最小深度。
1253 0
IOS 基于APNS消息推送原理与实现(JAVA后台)
IOS 基于APNS消息推送原理与实现(JAVA后台) Push的原理: Push 的工作机制可以简单的概括为下图   图中,Provider是指某个iPhone软件的Push服务器,这篇文章我将使用.net作为Provider。
1728 0
Effective java 第2版 - 笔记(01) 单例(Singleton)的枚举(enum)实现
直接上代码: 1 public enum Boss { 2 3 INSTANCE; 4 5 private String name; 6 7 public void doSomeThing() { 8 System.
861 0
java将JSON字符串转换为实体类对象,基于net.sf.json实现
java将JSON字符串转换为实体类对象 @SuppressWarnings("unchecked") public static T jsonToObject(String jsonString, Class pojoCalss) { try{ Object pojo; net.
841 0
+关注
21
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载