外行人都能看得懂的机器学习,错过了血亏!

简介:

前言

只有光头才能变强

没错,这篇主要跟大家一起入门机器学习。作为一个开发者,”人工智能“肯定是听过的。作为一个开发面试者,肯定也会见过”机器学习“这个岗位(反正我校招的时候就遇到过)。

可能还会听过或者见过“深度学习”、“神经网络”等等这些非常火的名词,那你对这些术语了解多少呢?

相信大家这几天在朋友圈也可以看到这照片:

核心AI代码

// 通过if else 以人工穷举的方式来假装实现智能机器人聊天

希望阅读完本文中后,大家可以对这些术语和机器学习有一定的了解。

一、术语介绍

首先我们来简单看看人工智能、深度学习、机器学习这些术语和它们之间的关系究竟是怎么样的。

1.1人工智能

不知道听到“人工智能”大家会联想到什么,可能大多数都会想到科幻电影的机器人。

《人工智能》电影的剧照

我们看来看看维基百科的定义:

人工智能(英语:Artificial Intelligence,缩写为 AI)亦称机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序的手段实现的人类智能技术。

人工智能也可以分成两类:

  • 强人工智能:强人工智能观点认为“有可能”制造出“真正”能推理(Reasoning)和解决问题的智能机器,并且,这样的机器将被认为是具有知觉、有自我意识的

    • 像绝大多数科幻电影中的机器人就是在这范畴
  • 弱人工智能:弱人工智能观点认为“不可能”制造出能“真正”地推理和解决问题的智能机器,这些机器只不过“看起来”像是智能的,但是并不真正拥有智能,也不会有自主意识。

    • 我们目前阶段的人工智能,其实都是弱人工智能。

1.2机器学习

不知道听到“机器学习”大家会联想到什么。Emmm...反正我就是从字面的意思去理解:“机器可以自我学习”。

首先我们看一下维基百科是怎么说的:

机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科

简单来说:机器学习可以通过大量的数据或者以往的经验自动改进计算机程序/算法

什么是机器学习

生成完模型f(x)之后,我们将样例数据丢进模型里边,就可以输出结果:

输入样例进模型,输出结果

我们说机器学习可以自我学习,是因为我们会将样例数据也会丢到“历史数据”中,这样生成模型就会有一定的改动,从而达到“自我学习”的效果。

1.3它们之间的关系

等等,我们好像还没讲深度学习呢。我们从上面机器学习的介绍也可以知道,机器学习已发展为一门多领域交叉学科,机器学习中就有好多个经典的算法,其中就包含了神经网络(深度学习可看成是神经网络的升级版)。由于近几年深度学习发展迅猛,一些特有的学习手段相继被提出,所以越来越多的人将其单独看作一种学习的方法。

《机器学习 周志华》:

所谓深度学习,狭义地说就是“很多层”的神经网络,在若干测试和竞赛下,尤其涉及语音、图像等复杂对象的引用中,深度学习取得优越的性能。

所以我们可以总结出人工智能、机器学习、深度学习之间的关系是这样的:

  • 机器学习,是实现人工智能的重要方法。
  • 深度学习,是实现机器学习的技术。

之间的关系

想要了解更多,可参考:

二、机器学习入门

通过上面我们可以简单认为机器学习就是:利用计算机从历史数据找出规律,把这些规律用到未来不确定场景的决策中。

下面我们再来学习一下机器学习的一些入门知识。

2.1机器学习的术语

特征、样本、数据集、标记这些术语的说明:

特征、样本、数据集、标记这些术语的说明

特征(属性)所张成的空间叫做特征空间

特征空间

例如我们把“色泽”、"根蒂“、”敲声“作为三个坐标轴,则它们张成一个用于描述西瓜的三围空间,每个西瓜都可在这个空间中找到自己的坐标位置。由于空间中的每个点对应一个坐标向量,我们也把一个示例称为“特征向量”。

特征向量

回到我们上面的图,再来讲讲“训练数据”、“训练”、“标记”:

训练数据、训练、标记的术语解释

2.2机器学习的分类

一般机器学习又可以分成以下几类:

  • 监督学习
  • 半监督学习
  • 非监督学习
  • 增强学习

2.2.1监督学习

监督学习:训练数据(Training Data)可以告诉我们要找的那个模型的输入(Input)与输出(Output,也就是我们说的label)之间有什么样的关系。

  • 给出的数据都有“答案”或“标记”

训练数据:"Java3y公众号"->好的公众号 , "Java4y公众号"->不好的公众号。
输出结果:好的公众号或者不好的公众号

在监听学习下又分为两种算法:

  • 回归(Regression):结果是一个连续的数值(scalar),而非类别
  • 分类(Classification):为训练数据进行分类别(多分类)

    • 二分类:类别只有两种结果(YES OR NO)

回归例子:知道前几天的PM2.5数值,预测一下明天的PM2.5数值。

回归例子

二分类例子:判断一封邮件是垃圾邮件还是正常邮件。

判断是垃圾邮件还是正常邮件

多分类例子:将新闻帖子分类成不同的类别。

分类成不同的类别

2.2.2非监督学习

非监督学习:训练数据(Training Data)没有对应“答案”或“标记”

训练数据:"Java3y公众号" "Java4y公众号" "Java5y公众号" "Java6y公众号" "yyy公众号" "xxx公众号" "zzz公众号"
输出结果:("Java3y公众号" "Java4y公众号" "Java5y公众号" "Java6y公众号") ("yyy公众号" "xxx公众号" "zzz公众号") 分门类别

对没有“标记”的数据进行分类-聚类分析

对没有标记的数据进行分类-聚类分析

聚类分析例子:在以前,中国移动有三个品牌:神州行、动感地带、全球通。我们给一堆的SIM卡交由学习算法训练,不告诉它每张SIM卡具体是什么卡,最后我们是可以将这些SIM卡分类别出来的

非监督学习的意义

非监督学习的意义

非监督学习的意义

2.2.3半监督学习

理解了监督学习和非监督学习,对于半监督学习就很容易理解了。

一部分数据有“标记”或者“答案”,另一部分数据没有

  • 因为各种原因产生的标记缺失。

部分有label,部分没有label

通常都会使用非监督学习手段对数据进行处理(特征提取、降维),之后再只用监督学习手段做模型的训练和预测。

2.2.4增强学习

根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式

增强学习

每次行动,就给这次的行动评分,算法会根据评分来评估下一次的行动是好还是坏,最终不断改进。

给每次的行动评分

例子:Alpha Go下每步棋的时候都会评估自己这次下得怎么样,通过最终的结果不断改进下的每步棋。

2.3机器学习的其他分类

除了我们上面所说的监督学习、非监督学习、半监督学习、增强学习之外,机器学习也可以分成:

  • 在线学习:及时将样例数据作为训练数据对模型进行训练。

    • 需要加强对数据进行监控(有可能样本数据是脏数据,这样就破坏我们的模型)
  • 离线(批量)学习:定时将样例数据作为训练数据对模型进行训练。

    • 不能很快的适应环境的变化

还有:

  • 参数学习:一旦学到了参数,就不再需要原有的数据集。通过调参数就好了。
  • 非参数学习:不对模型进行过多的假设,非参数不代表没参数。

最后

机器学习的核心在于算法上,这篇只是对机器学习的一个简单的入门,希望能对大家有所帮助。

机器学习资源私聊我获取

文章的目录导航

目录
相关文章
|
机器学习/深度学习 算法 物联网
12月19日云栖精选夜读 | 外行人都能看得懂的机器学习,错过了血亏!
前言 只有光头才能变强 没错,这篇主要跟大家一起入门机器学习。作为一个开发者,”人工智能“肯定是听过的。作为一个开发面试者,肯定也会见过”机器学习“这个岗位(反正我校招的时候就遇到过)。 可能还会听过或者见过“深度学习”、“神经网络”等等这些非常火的名词,那你对这些术语了解多少呢? 相信大家这几天在朋友圈也可以看到这照片: // 通过if else 以人工穷举的方式来假装实现智能机器人聊天 希望阅读完本文中后,大家可以对这些术语和机器学习有一定的了解。
2957 0
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
239 14
|
6月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
116 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
6月前
|
机器学习/深度学习 数据采集 算法
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
解码癌症预测的密码:可解释性机器学习算法SHAP揭示XGBoost模型的预测机制
307 0
|
6月前
|
机器学习/深度学习 数据采集 监控
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
机器学习-特征选择:如何使用递归特征消除算法自动筛选出最优特征?
917 0
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【2月更文挑战第20天】 在数据科学与人工智能的领域中,支持向量机(SVM)是一种强大的监督学习算法,它基于统计学习理论中的VC维理论和结构风险最小化原理。本文将深入探讨SVM的核心概念、工作原理以及实际应用案例。我们将透过算法的数学原理,揭示如何利用SVM进行有效的数据分类与回归分析,并讨论其在处理非线性问题时的优势。通过本文,读者将对SVM有更深层次的理解,并能够在实践中应用这一算法解决复杂的数据问题。
83 0
|
6月前
|
机器学习/深度学习 分布式计算 算法
大模型开发:你如何确定使用哪种机器学习算法?
在大型机器学习模型开发中,选择算法是关键。首先,明确问题类型(如回归、分类、聚类等)。其次,考虑数据规模、特征数量和类型、分布和结构,以判断适合的算法。再者,评估性能要求(准确性、速度、可解释性)和资源限制(计算资源、内存)。同时,利用领域知识和正则化来选择模型。最后,通过实验验证和模型比较进行优化。此过程涉及迭代和业务需求的技术权衡。
104 2
|
6月前
|
机器学习/深度学习 数据采集 存储
使用机器学习算法进行文本分类的方法与实践
本文将介绍使用机器学习算法进行文本分类的方法与实践。通过分析文本特征、选择合适的机器学习算法和构建有效的训练模型,可以实现准确和高效的文本分类任务。我们还将探讨如何处理文本数据预处理、特征提取和模型评估等方面的关键问题,以帮助读者更好地应用机器学习技术解决文本分类挑战。
|
6月前
|
机器学习/深度学习 人工智能 算法
利用Python实现简单的机器学习算法——线性回归
本文介绍了如何使用Python语言和相关库,通过实现线性回归算法来进行简单的机器学习模型训练和预测。通过详细的代码示例和解释,帮助读者了解机器学习中的基础概念和实践操作。