[雪峰磁针石博客]python工具书籍下载-持续更新

简介:

呕心沥血,持续收集python精品书籍,觉得不错的话,请在下面点喜欢收藏,谢谢!

python数据结构基础工具书籍下载-持续更新

2018最佳人工智能机器学习工具书籍及下载(持续更新)

2018最佳人工智能图像处理工具OpenCV书籍下载

web开发工具flask中文英文书籍下载-持续更新

python网络基础工具书籍下载-持续更新

python 3.7极速入门教程9最佳python中文工具书籍下载

机器学习工具pytorch中文英文工具书籍下载-持续更新

2018最佳selenium工具书籍汇总下载(持续更新)

python数据分析数据科学中文英文工具书籍下载-持续更新

2018最佳人工智能数据采集(爬虫)工具书下载

部分示例

pandas 0.23.4 官方文档.pdf

Python Data Science Handbook - 2017.pdf

  • 中文版待上传

图片.png

《Python数据科学手册》是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第 2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为重要的机器学习算法提供了高效整洁的Python版实现。

《Python数据科学手册》适合有编程背景,并打算将开源Python工具用作分析、操作、可视化以及学习数据的数据科学研究人员

https://github.com/jakevdp/PythonDataScienceHandbook 近12000+ 星

Python for Data Analysis, 2nd Edition - 2017.pdf

《利用Python进行数据分析·第2版.pdf

阅读本书可以获得关于在Python下操作、处理、清洗、规整数据集的完整说明。本书第2版针对Python3.6进行了更新,并增加了实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。

图片.png

https://github.com/wesm/pydata-book 近8000星

Data.Science.from.Scratch.First.Principles.with.Python - 2015.pdf

图片.png

亚马逊 4星 108评

https://github.com/joelgrus/data-science-from-scratch 3200+ 星

Python编程:从入门到实践 - 2016.pdf 初级

亚马逊 4.5星 345评论 https://github.com/ehmatthes/pcc 1000左右星

图片.png

本书是一本针对所有层次的Python读者而作的Python入门书。全书分两部分:首部分介绍用Python 编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;第 二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。

海报:

image

英文版:Python Crash Course - 2016.pdf

流畅的python - 2017.pdf 中级

图片.png

《流畅的Python》一书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。

海报:

image

https://github.com/fluentpython/example-code 2000+ 星 强烈推荐

英文版本:Fluent Python - 2014.pdf

Solutions Review审查了许多机器学习书籍,根据相关性,流行度,评分,发布日期以及增加业务价值的能力,精心挑选了顶级机器学习书籍。 列出的每本书至少有15个亚马逊用户评论,评分为4.0或更高。

您将在下面找到该领域公认的领导者,专家和技术专业人员的图书库。 从数据科学到神经网络,这些出版物甚至可以提供最终端的数据和分析专业人员。

个人建议优先考虑github星级1000以上的书。

Python深度学习 Deep Learning with Python François Chollet - 2018.pdf -- 强烈推荐

图片.png

Python深度学习 - 2018.pdf

图片.png

  • 源码 github星级 5000左右
  • 页数:386

Deep Learning with Python使用Python语言和强大的Keras库引入深度学习。 本书由Keras作者,Google AI研究员FrançoisChollet撰写,通过直观的解释和实际例子帮助您的理解,涉及计算机视觉,自然语言处理和生成模型。

中文版(文字版)可以在qq群144081101等找到。

机器学习实战:基于Scikit-Learn和TensorFlow Hands-On Machine Learning with Scikit-Learn and TensorFlow - 2017.pdf

图片.png

机器学习实战:基于Scikit-Learn和TensorFlow - 2018.pdf

图片.png

通过使用具体的例子,最小的理论和两个可用于生产的Python框架 - scikit-learn和TensorFlow,作者AurélienGéron帮助您直观地理解构建智能系统的概念和工具。 您将学习一系列技术,从简单的线性回归开始,逐步深入到神经网络。 通过每一章的练习来帮助您应用所学的知识,有编程经验就能上手。

Machine Learning For Absolute Beginners, 2nd Edition-Oliver Theobald(2017).pdf

图片.png

Machine Learning for Absolute Beginners Second Edition为完全初学者编写和设计的。简单的英语解释,无需编码经验。 在引入核心算法的地方,添加了清晰的解释和可视化示例,以便在家中轻松实现。新版本包含了第一版中未涉及的许多主题,包括交叉验证,数据清理和集合建模。

深度学习(deep learning) - 2017.pdf

图片.png

提供了数学和概念背景,涵盖了线性代数,概率论和信息论,数值计算和机器学习中的相关概念。 它描述了工业从业者使用的深度学习技术,包括深度前馈网络,正则化,优化算法,卷积网络,序列建模和实用方法; 分析了自然语言处理,语音识别,计算机视觉和在线推荐系统等应用。

  • 源码地址:暂无 github星级 20000左右
  • 页数: 738 中文书 本书没有英文电子版本,但是有中文的

Python机器学习基础教程 - 2018.pdf

Introduction to Machine Learning with Python - 2017.pdf

图片.png

如果您使用Python,即使是初学者,本书也将用务实的方法教您构建自己的机器学习解决方案。 您将学习使用Python和scikit-learn库创建成功的机器学习。 作者AndreasMüller和Sarah Guido专注于使用机器学习算法的应用,而不是背后的数学。 熟悉NumPy和matplotlib库将帮助您从本书中获得更多信息。

  • 源码 github星级 3000左右
  • 页数: 392

使用TensorFlow进行机器学习

Machine Learning with TensorFlow - 2017.pdf

图片.png

使用TensorFlow进行机器学习为读者提供了机器学习概念的坚实基础,以及使用Python编写TensorFlow的实践经验。 您将通过使用经典预测,分类和聚类算法来学习基础知识。 然后,您将进入金钱章节:探索深度学习概念,如自动编码器,循环神经网络和强化学习。 摘要本书,您将准备好使用TensorFlow进行自己的机器学习和深度学习应用。“

  • 源码 github星级 4000左右
  • 页数: 244
相关文章
|
10天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
63 7
|
20天前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
25天前
|
JavaScript 前端开发 开发者
探索 DrissionPage: 强大的Python网页自动化工具
DrissionPage 是一个基于 Python 的网页自动化工具,结合了浏览器自动化的便利性和 requests 库的高效率。它提供三种页面对象:ChromiumPage、WebPage 和 SessionPage,分别适用于不同的使用场景,帮助开发者高效完成网页自动化任务。
107 4
|
27天前
|
开发者 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第41天】 在编程的世界中,效率与简洁是永恒的追求。本文将深入探讨Python编程语言中一个独特且强大的特性——列表推导式(List Comprehension)。我们将通过实际代码示例,展示如何利用这一工具简化代码、提升性能,并解决常见编程问题。无论你是初学者还是资深开发者,掌握列表推导式都将使你的Python之旅更加顺畅。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
39 2
|
1月前
|
C语言 Python
探索Python中的列表推导式:简洁而强大的工具
【10月更文挑战第24天】在Python编程的世界中,追求代码的简洁性和可读性是永恒的主题。列表推导式(List Comprehensions)作为Python语言的一个特色功能,提供了一种优雅且高效的方法来创建和处理列表。本文将深入探讨列表推导式的使用场景、语法结构以及如何通过它简化日常编程任务。
|
Linux Python
博客链接—Python
001 Import this—Python的设计原则 :http://blog.itpub.net/29067253/viewspace-2072710/ 002 Python问答环节(1):http://blog.
929 0
|
12天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
11天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
18天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
131 59