TensorFlow系列专题(八):七步带你实现RNN循环神经网络小示例

简介:

在前面的内容里,我们已经学习了循环神经网络的基本结构和运算过程,这一小节里,我们将用TensorFlow实现简单的RNN,并且用来解决时序数据的预测问题,看一看RNN究竟能达到什么样的效果,具体又是如何实现的。


在这个演示项目里,我们使用随机生成的方式生成一个数据集(由0和1组成的二进制序列),然后人为的增加一些数据间的关系。最后我们把这个数据集放进RNN里,让RNN去学习其中的关系,实现二进制序列的预测1。数据生成的方式如下:

循环生成规模为五十万的数据集,每次产生的数据为0或1的概率均为0.5。如果连续生成了两个1(或两个0)的话,则下一个数据强制为0(或1)。

1. 我们首先导入需要的Python模块:

31bf15f8e54bd0640b5d33d0a6e57a28c77ee95d

2. 定义一个Data类,用来产生数据:

340afe74ac32d0127f3a9e77e8ef5e73278d471a

3. 在构造方法“__init__”中,我们初始化了数据集的大小“data_size”、一个batch的大小“batch_size”、一个epoch中的batch数目“num_batch”以及RNN的时间步“time_step”。接下来我们定义一个“generate_data”方法:

0da65e54c57126c04846f171ea6f4c712338af62

在第11行代码中,我们用了“np.random.choice”函数生成的由0和1组成的长串数据。接下来我们用了一个for循环,在“data_without_rel”保存的数据的基础上重新生成了一组数据,并保存在“data_with_rel”数组中。为了使生成的数据间具有一定的序列关系,我们使用了前面介绍的很简单的数据生成方式:以“data_without_rel”中的数据为参照,如果出现了连续两个1(或0)则生成一个0(或1),其它情况则以相等概率随机生成0或1。

有了数据我们接下来要用RNN去学习这些数据,看看它能不能学习到我们产生这些数据时使用的策略,即数据间的联系。评判RNN是否学习到规律以及学习的效果如何的依据,是我们在第三章里介绍过的交叉熵损失函数。根据我们生成数据的规则,如果RNN没有学习到规则,那么它预测正确的概率就是0.5,否则它预测正确的概率为:0.5*0.5+0.5*1=0.75(在“data_without_rel”中,连续出现的两个数字的组合为:00、01、10和11。00和11出现的总概率占0.5,在这种情况下,如果RNN学习到了规律,那么一定能预测出下一个数字,00对应1,11对应0。而如果出现的是01或10的话,RNN预测正确的概率就只有0.5,所以综合起来就是0.75)。

根据交叉熵损失函数,在没有学习到规律的时候,其交叉熵损失为:

loss = - (0.5 * np.log(0.5) + 0.5 * np.log(0.5)) = 0.6931471805599453

在学习到规律的时候,其交叉熵损失为:

Loss = -0.5*(0.5 * np.log(0.5) + np.log(0.5))

=-0.25 * (1 * np.log(1) ) - 0.25 * (1 *np.log(1))

=0.34657359027997264

4. 我们定义“generate_epochs”方法处理生成的数据:

ec0efaad38708718fae42245b3537bc10e1315c6

5. 接下来实现RNN部分:

bf69aeb9ced445485b429a5b789d7499b39764cd

6. 定义RNN模型:

727cd9d027fa6d3a6546897a1a5075d7b501a11e

这里我们使用了“dynamic_rnn”,因此每次会同时处理所有batch的第一组数据,总共处理的次数为:batch_size / time_step。

27d7a5c2d8c6dbd368c3808f4a493312482c4e51

7. 到这里,我们已经实现了整个RNN模型,接下来初始化相关数据,看看RNN的学习效果如何:

f82e742478a0b2def1c717577914e3495c388c17

定义数据集的大小为500000,每个batch的大小为2000,RNN的“时间步”设为5,隐藏层的神经元数目为6。将训练过程中的loss可视化,结果如下图中的左侧图像所示:

9a2084aaa85516602b8114469279f8c39c5df251

图1 二进制序列数据训练的loss曲线

从左侧loss曲线可以看到,loss最终稳定在了0.35左右,这与我们之前的计算结果一致,说明RNN学习到了序列数据中的规则。右侧的loss曲线是在调整了序列关系的时间间隔后(此时的time_step过小,导致RNN无法学习到序列数据的规则)的结果,此时loss稳定在0.69左右,与之前的计算也吻合。


原文发布时间为:2018-11-15

本文来自云栖社区合作伙伴“磐创AI”,了解相关信息可以关注“磐创AI”。

相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
2月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
370 2
|
3月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
111 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
16天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
97 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
21天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
36 6
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
58 3
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
114 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
119 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别

热门文章

最新文章

下一篇
DataWorks