将强化学习用于深度学习选模型+调参:谷歌AutoML背后的技术解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:


AutoML 是 Google 最新的产品,能够根据问题自动确定最优参数和网络结构。本文章就关注解析 AutoML 背后的技术,由于 AutoML 缺乏技术文档,我们的解析有不到之处,还请多多更正。

罗马不是一天建成的。AutoML 并非一蹴而就,而是 Google 的研究者在过去几年不断思考中产生的理论与实践结合的完美产物。下图是 Google 的 AutoML 探索之路。


人工网络结构搜索(Inception-ResNet 与 Inception V4)


Alexnet 在 IMAGENET 取得冠军之后,Google 意识到了深度学习是未来的趋势,于是投入巨资进行神经网络的研究。从 Deepmind 被收购,Hinton 加入 Google,Tensorflow 的开源中可见 Google 对于 Deep Learning 的重视与远见。Google 在不断的调参数中发现了著名的 Inception 网络,并且结合 ReNet,发现了 Inception-ResNet,V4 和 Xception。这些发现让 Google 注意到了神经网络结构会对结构产生巨大影响,但是找到最优的结构需要耗费大量的人力和物力,并且对于一个新的数据集还需要投入同样的资源搜索合适的结构,这样的人工搜索是不能够 scalable 的。Inception-ResNet 的网络结构请参考论文:https://arxiv.org/pdf/1602.07261.pdf。Inception 系列网络跟 ResNet 的结果比较。

神经网络搜索初探:Neural Architecture Search with Reinforcement Learning(ICLR 2017 Best Paper)

为了增加网络结构搜索的 scalability,Google Residency Program 的成员 Barrret Zoph 在 Quoc Le 的带领下开始了神经网络自动调参的尝试,Neural Architecture Search with Reinforcement Learning 就是对这一工作的总结。该论文获得了 ICLR 2017 的 Best Paper。Barret Zoph 的工作成功在 CIFAR 和 PTB 上面搜索到了 state-of-the-art 的 CNN 和 LSTM 结构,最优 CNN 与 LSTM 结构对比如下:



Barret Zoph 使用强化学习进行网络结构搜索,网络框架图如下图:


Controller 是由 RNN 构成能够产生每层网络的 Kernel 大小和 skip connection 的连接,产生了网络结构之后,使用网络结构的准确率作为 Reward function。Controller 会根据 reward function 的反馈进行网络结构调节,最后会得到最优的网络结构。Controller 生成网络结构预测如下图:


本篇论文会对 controller 预测的网络进行 SGD 学习,网络收敛之后的准确率为 Reward,然后使用 reinforcement learning 的 policy gradient 进行 controller 权值更新,policy gradient 公式如下:


期望值用下面的公式进行近似:


为了保证训练稳定,引入了 baseline,公式如下:


为了保证收敛速度,作者引入了 asynchronous 权值更新,在每个 GPU 中分配多个网络结构进行训练,跟 asynchronous reinforcement learning 的 idea 类似。该论文的 distribution 结构如下图:

本篇论文能够避免手动调参数,但是得到网络搜索需要 800GPU 搜索几个月的时间,最近 Google 使用 P100 可以在一周左右训练出模型,本论文仅仅在 CIFAR 上面进行实验,在大规模数据集 IMAGENET 上面的使用受限。

Large Scale Evolution of Image Classifiers(ICML 2017)


本篇论文通过 large scale evolution 的办法来搜索最优的神经网络,由于本人能力有限,我们不对这篇论文进行技术解析。该论文的结构搜索过程如下图:


有趣的现象是,evolution 搜索偏向于没有 skip connection 的神经网络。通过 evolution 办法搜索到的神经网络比 ResNet 结果好,但是低于 DenseNet,如下图:


神经网络搜索技术实用之路探索


为了让结构搜索的工作能够实用,Google 的研究者从 progressive Search,Transferable architecture 和 Bayesian 的角度进行探索,并且取得了进展。

Progressive Neural Architecture Search(PNAS)


本篇论文提出了通过 progressive 的办法进行网络搜索,会比 RL 方法快 2 倍,比 evolution 方法快 5 倍。


与之前的方法不同,本篇论文是在一个网络的基础上面加上新的 cell,然后使用类似与 A*搜索(Branch and Bound)的办法,搜索到最优的网络结构。Progressive 方法示意图如下:


PNAS 所使用的 Cell 结构如下:

Learning Transferable Architecture for Scalable Image Recognition

本篇论文是集大成者,Barret Zoph 在之前全部技术的基础上面,成功地将自动结构搜索在 IMAEGNET,COCO 等实用性的物体分类和检测任务上面成功运用。结果太 AMAZING 啦。竟然超过了 ResNet-FPN,COCO 物体检测结果如下:

Barret Zoph 首先在 CIFAR 上面使用之前的方法搜索出最优 cell,然后将 cell 重复的运用在 IMAGENET 上面(真的就是这么简单有效 >_<)。最优单个 cell 的结构如下图:


可能 AutoML 用的就是这种技术吧。

总结

Google 在大规模的调参中发现了手动调参不能够适应大数据时代的需求。于是进行从 reinforcement learning 和 evolution 两个角度进行了自动调参的初探。为了改进网络结构搜索的时间,Google 提出了 Progressive Search 和 Transferable Architecture 的办法。从中我们可以感受到 Google 一步一个脚印的做事方法,希望 AI 公司和个人都能够从中获得一些收益 >_<。


from:http://tech.ifeng.com/a/20180202/44868903_0.shtml



目录
打赏
0
0
0
0
129
分享
相关文章
穿戴科技新风尚:智能服装设计与技术全解析
穿戴科技新风尚:智能服装设计与技术全解析
150 85
RTSP协议规范与SmartMediaKit播放器技术解析
RTSP协议是实时流媒体传输的重要规范,大牛直播SDK的rtsp播放器基于此构建,具备跨平台支持、超低延迟(100-300ms)、多实例播放、高效资源利用、音视频同步等优势。它广泛应用于安防监控、远程教学等领域,提供实时录像、快照等功能,优化网络传输与解码效率,并通过事件回调机制保障稳定性。作为高性能解决方案,它推动了实时流媒体技术的发展。
HarmonyOS Next~鸿蒙AI功能开发:Core Speech Kit与Core Vision Kit的技术解析与实践
本文深入解析鸿蒙操作系统(HarmonyOS)中的Core Speech Kit与Core Vision Kit,探讨其在AI功能开发中的核心能力与实践方法。Core Speech Kit聚焦语音交互,提供语音识别、合成等功能,支持多场景应用;Core Vision Kit专注视觉处理,涵盖人脸检测、OCR等技术。文章还分析了两者的协同应用及生态发展趋势,展望未来AI技术与鸿蒙系统结合带来的智能交互新阶段。
72 31
可穿戴设备如何重塑医疗健康:技术解析与应用实战
可穿戴设备如何重塑医疗健康:技术解析与应用实战
49 4
AI技术如何重塑客服系统?解析合力亿捷AI智能客服系统实践案例
本文探讨了人工智能技术在客服系统中的应用,涵盖技术架构、关键技术和优化策略。通过感知层、认知层、决策层和执行层的协同工作,结合自然语言处理、知识库构建和多模态交互技术,合力亿捷客服系统实现了智能化服务。文章还提出了用户体验优化、服务质量提升和系统性能改进的方法,并展望了未来发展方向,强调其在客户服务领域的核心价值与潜力。
72 6
静态IP代理与动态IP代理:提升速度与保障隐私的技术解析
本文探讨了静态IP代理和动态IP代理的特性和应用场景。静态IP代理通过高质量服务提供商、网络设置优化、定期更换IP与负载均衡及性能监控提升网络访问速度;动态IP代理则通过隐藏真实IP、增强安全性、绕过封锁和提供独立IP保障用户隐私。结合实际案例与代码示例,展示了两者在不同场景下的优势,帮助用户根据需求选择合适的代理服务以实现高效、安全的网络访问。
49 1
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
133 6
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
96 40

热门文章

最新文章

推荐镜像

更多