将强化学习用于深度学习选模型+调参:谷歌AutoML背后的技术解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:


AutoML 是 Google 最新的产品,能够根据问题自动确定最优参数和网络结构。本文章就关注解析 AutoML 背后的技术,由于 AutoML 缺乏技术文档,我们的解析有不到之处,还请多多更正。

罗马不是一天建成的。AutoML 并非一蹴而就,而是 Google 的研究者在过去几年不断思考中产生的理论与实践结合的完美产物。下图是 Google 的 AutoML 探索之路。


人工网络结构搜索(Inception-ResNet 与 Inception V4)


Alexnet 在 IMAGENET 取得冠军之后,Google 意识到了深度学习是未来的趋势,于是投入巨资进行神经网络的研究。从 Deepmind 被收购,Hinton 加入 Google,Tensorflow 的开源中可见 Google 对于 Deep Learning 的重视与远见。Google 在不断的调参数中发现了著名的 Inception 网络,并且结合 ReNet,发现了 Inception-ResNet,V4 和 Xception。这些发现让 Google 注意到了神经网络结构会对结构产生巨大影响,但是找到最优的结构需要耗费大量的人力和物力,并且对于一个新的数据集还需要投入同样的资源搜索合适的结构,这样的人工搜索是不能够 scalable 的。Inception-ResNet 的网络结构请参考论文:https://arxiv.org/pdf/1602.07261.pdf。Inception 系列网络跟 ResNet 的结果比较。

神经网络搜索初探:Neural Architecture Search with Reinforcement Learning(ICLR 2017 Best Paper)

为了增加网络结构搜索的 scalability,Google Residency Program 的成员 Barrret Zoph 在 Quoc Le 的带领下开始了神经网络自动调参的尝试,Neural Architecture Search with Reinforcement Learning 就是对这一工作的总结。该论文获得了 ICLR 2017 的 Best Paper。Barret Zoph 的工作成功在 CIFAR 和 PTB 上面搜索到了 state-of-the-art 的 CNN 和 LSTM 结构,最优 CNN 与 LSTM 结构对比如下:



Barret Zoph 使用强化学习进行网络结构搜索,网络框架图如下图:


Controller 是由 RNN 构成能够产生每层网络的 Kernel 大小和 skip connection 的连接,产生了网络结构之后,使用网络结构的准确率作为 Reward function。Controller 会根据 reward function 的反馈进行网络结构调节,最后会得到最优的网络结构。Controller 生成网络结构预测如下图:


本篇论文会对 controller 预测的网络进行 SGD 学习,网络收敛之后的准确率为 Reward,然后使用 reinforcement learning 的 policy gradient 进行 controller 权值更新,policy gradient 公式如下:


期望值用下面的公式进行近似:


为了保证训练稳定,引入了 baseline,公式如下:


为了保证收敛速度,作者引入了 asynchronous 权值更新,在每个 GPU 中分配多个网络结构进行训练,跟 asynchronous reinforcement learning 的 idea 类似。该论文的 distribution 结构如下图:

本篇论文能够避免手动调参数,但是得到网络搜索需要 800GPU 搜索几个月的时间,最近 Google 使用 P100 可以在一周左右训练出模型,本论文仅仅在 CIFAR 上面进行实验,在大规模数据集 IMAGENET 上面的使用受限。

Large Scale Evolution of Image Classifiers(ICML 2017)


本篇论文通过 large scale evolution 的办法来搜索最优的神经网络,由于本人能力有限,我们不对这篇论文进行技术解析。该论文的结构搜索过程如下图:


有趣的现象是,evolution 搜索偏向于没有 skip connection 的神经网络。通过 evolution 办法搜索到的神经网络比 ResNet 结果好,但是低于 DenseNet,如下图:


神经网络搜索技术实用之路探索


为了让结构搜索的工作能够实用,Google 的研究者从 progressive Search,Transferable architecture 和 Bayesian 的角度进行探索,并且取得了进展。

Progressive Neural Architecture Search(PNAS)


本篇论文提出了通过 progressive 的办法进行网络搜索,会比 RL 方法快 2 倍,比 evolution 方法快 5 倍。


与之前的方法不同,本篇论文是在一个网络的基础上面加上新的 cell,然后使用类似与 A*搜索(Branch and Bound)的办法,搜索到最优的网络结构。Progressive 方法示意图如下:


PNAS 所使用的 Cell 结构如下:

Learning Transferable Architecture for Scalable Image Recognition

本篇论文是集大成者,Barret Zoph 在之前全部技术的基础上面,成功地将自动结构搜索在 IMAEGNET,COCO 等实用性的物体分类和检测任务上面成功运用。结果太 AMAZING 啦。竟然超过了 ResNet-FPN,COCO 物体检测结果如下:

Barret Zoph 首先在 CIFAR 上面使用之前的方法搜索出最优 cell,然后将 cell 重复的运用在 IMAGENET 上面(真的就是这么简单有效 >_<)。最优单个 cell 的结构如下图:


可能 AutoML 用的就是这种技术吧。

总结

Google 在大规模的调参中发现了手动调参不能够适应大数据时代的需求。于是进行从 reinforcement learning 和 evolution 两个角度进行了自动调参的初探。为了改进网络结构搜索的时间,Google 提出了 Progressive Search 和 Transferable Architecture 的办法。从中我们可以感受到 Google 一步一个脚印的做事方法,希望 AI 公司和个人都能够从中获得一些收益 >_<。


from:http://tech.ifeng.com/a/20180202/44868903_0.shtml



目录
相关文章
|
30天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
121 10
|
1月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
173 73
|
14天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
80 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
7天前
|
Kubernetes Linux 虚拟化
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
56 11
|
16天前
|
域名解析 负载均衡 安全
DNS技术标准趋势和安全研究
本文探讨了互联网域名基础设施的结构性安全风险,由清华大学段教授团队多年研究总结。文章指出,DNS系统的安全性不仅受代码实现影响,更源于其设计、实现、运营及治理中的固有缺陷。主要风险包括协议设计缺陷(如明文传输)、生态演进隐患(如单点故障增加)和薄弱的信任关系(如威胁情报被操纵)。团队通过多项研究揭示了这些深层次问题,并呼吁构建更加可信的DNS基础设施,以保障全球互联网的安全稳定运行。
|
16天前
|
缓存 网络协议 安全
融合DNS技术产品和生态
本文介绍了阿里云在互联网基础资源领域的最新进展和解决方案,重点围绕共筑韧性寻址、赋能新质生产展开。随着应用规模的增长,基础服务的韧性变得尤为重要。阿里云作为互联网资源的践行者,致力于推动互联网基础资源技术研究和自主创新,打造更韧性的寻址基础服务。文章还详细介绍了浙江省IPv6创新实验室的成立背景与工作进展,以及阿里云在IPv6规模化部署、DNS产品能力升级等方面的成果。此外,阿里云通过端云融合场景下的企业级DNS服务,帮助企业构建稳定安全的DNS系统,确保企业在数字世界中的稳定运行。最后,文章强调了全链路极致高可用的企业DNS解决方案,为全球互联网基础资源的创新提供了中国标准和数字化解决方案。
|
17天前
|
缓存 边缘计算 网络协议
深入解析CDN技术:加速互联网内容分发的幕后英雄
内容分发网络(CDN)是现代互联网架构的重要组成部分,通过全球分布的服务器节点,加速网站、应用和多媒体内容的传递。它不仅提升了访问速度和用户体验,还减轻了源站服务器的负担。CDN的核心技术包括缓存机制、动态加速、流媒体加速和安全防护,广泛应用于静态资源、动态内容、视频直播及大文件下载等场景,具有低延迟、高带宽、稳定性强等优势,有效降低成本并保障安全。
61 4
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
82 21
|
1月前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
145 6

热门文章

最新文章

推荐镜像

更多