R 梯度提升算法①

简介: 用gbm包实现随机梯度提升算法自适应提升方法AdaBoost它是一种传统而重要的Boost算法,在学习时为每一个样本赋上一个权重,初始时各样本权重一样。

用gbm包实现随机梯度提升算法

自适应提升方法AdaBoost

它是一种传统而重要的Boost算法,在学习时为每一个样本赋上一个权重,初始时各样本权重一样。在每一步训练后,增加错误学习样本的权重,这使得某些样本的重要性凸显出来,在进行了N次迭代后,将会得到N个简单的学习器。最后将它们组合起来得到一个最终的模型。

梯度提升方法Gradient Boosting

梯度提升算法初看起来不是很好理解,但我们和线性回归加以类比就容易了。回忆一下线性回归是希望找到一组参数使得残差最小化。如果只用一次项来解释二次曲线一定会有大量残差留下来,此时就可以用二次项来继续解释残差,所以可在模型中加入这个二次项。

  • 在gbm包中,采用的是决策树作为基学习器,重要的参数设置如下:
  • 损失函数的形式(distribution)
  • 迭代次数(n.trees)
  • 学习速率(shrinkage)
  • 再抽样比率(bag.fraction)
  • 决策树的深度(interaction.depth)
  • 损失函数的形式容易设定,分类问题一般选择bernoulli分布,而回归问题可以选择gaussian分布。学习速率方面,我们都知道步子迈得太大容易扯着,所以学习速率是越小越好,但是步子太小的话,步数就得增加,也就是训练的迭代次数需要加大才能使模型达到最优,这样训练所需时间和计算资源也相应加大了。gbm作者的经验法则是设置shrinkage参数在0.01-0.001之间,而n.trees参数在3000-10000之间。
setwd("E:\\Rwork")
if(!suppressWarnings(require('gbm')))
{
  install.packages('gbm')
  require('gbm')
}


# 加载包和数据
library(gbm)
data(PimaIndiansDiabetes2,package='mlbench')
# 将响应变量转为0-1格式
data <- PimaIndiansDiabetes2
data$diabetes <- as.numeric(data$diabetes)
data <- transform(data,diabetes=diabetes-1)
# 使用gbm函数建模
model <- gbm(diabetes~.,data=data,shrinkage=0.01,
             distribution='bernoulli',cv.folds=5,
             n.trees=3000,verbose=F)
# 用交叉检验确定最佳迭代次数
best.iter <- gbm.perf(model,method='cv')

# 观察各解释变量的重要程度
summary(model,best.iter)

# 变量的边际效应
plot.gbm(model,1,best.iter)
library(caret)
data <- na.omit(PimaIndiansDiabetes2)
fitControl <- trainControl(method = "cv", 
                           number = 5,
                           returnResamp = "all")
model2 <- train(diabetes~., 
                data=data,method='gbm',
                distribution='bernoulli',
                trControl = fitControl,
                verbose=F,
                tuneGrid = data.frame(n.trees=1200,shrinkage=0.01,interaction.depth=1, n.minobsinnode = 10))
model2
 Stochastic Gradient Boosting 

392 samples
  8 predictor
  2 classes: 'neg', 'pos' 

No pre-processing
Resampling: Cross-Validated (5 fold) 
Summary of sample sizes: 314, 314, 313, 314, 313 
Resampling results:

  Accuracy   Kappa    
  0.7780915  0.4762955

Tuning parameter 'n.trees' was held constant at a value of 1200
Tuning parameter 'interaction.depth' was
 held constant at a value of 1
Tuning parameter 'shrinkage' was held constant at a value of 0.01

Tuning parameter 'n.minobsinnode' was held constant at a value of 10
目录
相关文章
|
8月前
|
机器学习/深度学习 人工智能 算法
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
1289 1
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
Python实现GBDT(梯度提升树)回归模型(GradientBoostingRegressor算法)项目实战
|
6月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
|
7月前
|
机器学习/深度学习 算法
梯度提升树GBDT系列算法
在Boosting集成算法当中,我们逐一建立多个弱评估器(基本是决策树),并且下一个弱评估器的建立方式依赖于上一个弱评估器的评估结果,最终综合多个弱评估器的结果进行输出。
|
7月前
|
机器学习/深度学习 算法
机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略
【6月更文挑战第28天】**机器学习中的超参数优化涉及手动尝试、网格搜索、随机搜索、贝叶斯优化、梯度优化、进化算法等策略。工具如scikit-optimize、Optuna助力优化,迁移学习和元学习提供起点,集成方法则通过多模型融合提升性能。资源与时间考虑至关重要,交叉验证和提前停止能有效防止过拟合。**
87 0
|
8月前
|
机器学习/深度学习 算法 Python
探索Python中的基础算法:梯度提升机(GBM)
探索Python中的基础算法:梯度提升机(GBM)
427 2
|
8月前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
|
8月前
|
机器学习/深度学习 算法 数据可视化
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
|
机器学习/深度学习 人工智能 算法
解密人工智能:KNN | K-均值 | 降维算法 | 梯度Boosting算法 | AdaBoosting算法
解密人工智能:KNN | K-均值 | 降维算法 | 梯度Boosting算法 | AdaBoosting算法
194 0

热门文章

最新文章