探索Python中的基础算法:梯度提升机(GBM)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 探索Python中的基础算法:梯度提升机(GBM)

在机器学习领域中,梯度提升机(Gradient Boosting Machine,GBM)是一种强大的集成学习算法,常用于解决回归和分类问题。它通过不断迭代,以损失函数的负梯度方向训练出一个弱学习器的序列,然后将它们组合起来构成一个强大的模型。本文将详细介绍GBM的原理、实现步骤以及如何使用Python进行编程实践。

什么是梯度提升机?

梯度提升机是一种集成学习方法,它通过将多个弱学习器组合起来构建一个强大的模型。在GBM中,每个弱学习器都是基于决策树的,它们是通过梯度下降的方法来逐步构建的。

梯度提升机的原理

梯度提升机的原理可以简单地概括为以下几个步骤:

  • 初始化模型:首先,将一个简单的模型(比如常数)作为初始的预测模型。

  • 计算残差:计算当前模型对于每个样本的残差(即真实值与当前模型的预测值之差)。

  • 拟合残差:利用残差拟合一个新的基学习器,使得当前模型加上新学习器的组合能够更好地拟合数据。

  • 更新模型:将新学习器加到当前模型中,更新模型的预测值。

  • 重复迭代:重复步骤2至步骤4,直到满足停止条件(如达到最大迭代次数、残差足够小等)。

  • 得到最终模型:将所有的基学习器组合起来,构成最终的预测模型。

Python中的梯度提升机实现

下面我们使用Python中的scikit-learn库来实现一个简单的梯度提升机模型:

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error

# 加载波士顿房价数据集
boston = load_boston()
X = boston.data
y = boston.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建梯度提升机回归模型
gbm_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)

# 训练模型
gbm_model.fit(X_train, y_train)

# 预测
y_pred = gbm_model.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

在上述代码中,我们使用了scikit-learn库中的GradientBoostingRegressor类来构建梯度提升机回归模型,并使用波士顿房价数据集进行训练和测试。

总结

梯度提升机是一种强大的集成学习算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了梯度提升机的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用梯度提升机算法。

目录
相关文章
|
2月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
63 4
|
2月前
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
68 6
|
4天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
60 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
59 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
20天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
34 2
|
2月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
70 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
29天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
37 3