sklearn调包侠之决策树算法

简介: 决策树原理之前我们详细讲解过决策树的原理,详细内容可以参考该链接(https://www.jianshu.com/p/0dd283516cbe)。
img_e335dee3ccf8914f29bfb462173bb609.png

决策树原理

之前我们详细讲解过决策树的原理,详细内容可以参考该链接(https://www.jianshu.com/p/0dd283516cbe)。

改进算法

但使用信息增益作为特征选择指标(ID3算法)容易造成过拟合。举一个简单例子,每个类别如果都有一个唯一ID,通过ID这个特征就可以简单分类,但这并不是有效的。为了解决这个问题,有了C4.5和CART算法,其区别如下所示:

  • ID3 是信息增益划分
  • C4.5 是信息增益率划分
  • CART 做分类工作时,采用 GINI 值作为节点分裂的依据

实战——泰坦尼克号生还预测

数据导入与预处理

该数据可在kaggle网站下载,这里我们先通过pandas读入数据。

import numpy as np
import pandas as pd

df = pd.read_csv('data/titanic/train.csv',index_col=0)
df.head()
img_fc97f6c9abb0dc86fd83db9441689274.png

首先,对于一些不重要的信息进行删除(例如Name);我们都知道,机器学习是没法对字符串进行计算的,这里需要把Sex、Embarked转换为整数类型。

# 删除列
df.drop(['Name', 'Ticket', 'Cabin'], axis=1, inplace=True)
# Sex转换
def f1(x):
    if x == 'male':
        return 1
    else:
        return 0
df['Sex'] = df['Sex'].apply(f1)

然后,Embarked有缺失值,我们通过seaborn进行可视化,发现S值最多,所以通过S值进行缺失值填充。

import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

sns.countplot(x="Embarked",data=df)
img_86d2caf2c8ab55c76977a275f1d8dd77.png
df['Embarked'] = df['Embarked'].fillna('S')
labels = df['Embarked'].unique().tolist()
df['Embarked'] = df['Embarked'].apply(lambda n: labels.index(n))

年龄字段也有缺失值,我们通过绘制直方图,发现基本呈正态分布,于是使用平均值来填充缺失值。

sns.set(style="darkgrid", palette="muted", color_codes=True)    
sns.distplot(df[df['Age'].notnull()]['Age'])
img_8d8e1f9763e8175aa473d4a3aac6e2af.png
df['Age'] = df['Age'].fillna(df['Age'].mean())
df['Age'].isnull().sum()

处理完成后的数据如下:

img_7783fc14d5901dac0c0d947043d23705.png
切分数据集
from sklearn.model_selection import train_test_split
X = df.iloc[:, 1:]
y = df['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=22)
模型训练与评估

决策树算法使用sklearn.tree模块中的DecisionTreeClassifier方法。该方法有一系列参数来控制决策树生成过程,从而解决过拟合问题(具体可看sklearn的官方文档)。常用的参数如下:

  • criterion:算法选择。一种是信息熵(entropy),一种是基尼系数(gini),默认为gini。
  • max_depth:指定数的最大深度。
  • min_samples_split:默认为2,指定能创建分支的数据集大小。
  • min_impurity_decrease:指定信息增益的阈值。

首先,我们不对参数进行调整。

from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)

# result
# 0.82122905027932958

我们用交叉验证查看模型的准确度,发现模型的精度并不是很高。

from sklearn.model_selection import cross_val_score

result = cross_val_score(clf, X, y, cv=10)
print(result.mean())

# result
# 0.772279536942
模型调优

我们可以设置不同的参数,对模型进行调优,这里以max_depth为例,定义函数,求出最好的参数。

def cv_score(d):
    clf = DecisionTreeClassifier(max_depth=d)
    clf.fit(X_train, y_train)
    tr_score = clf.score(X_train, y_train)
    cv_score = clf.score(X_test, y_test)
    return (tr_score, cv_score)

depths = range(2, 15)
scores = [cv_score(d) for d in depths]
tr_scores = [s[0] for s in scores]
cv_scores = [s[1] for s in scores]

best_score_index = np.argmax(cv_scores)
best_score = cv_scores[best_score_index]
best_param = depths[best_score_index]
print('best param: {0}; best score: {1}'.format(best_param, best_score))

plt.figure(figsize=(10, 6), dpi=144)
plt.grid()
plt.xlabel('max depth of decision tree')
plt.ylabel('score')
plt.plot(depths, cv_scores, '.g-', label='cross-validation score')
plt.plot(depths, tr_scores, '.r--', label='training score')
plt.legend()

# result
# best param: 11; best score: 0.8212290502793296
img_3b21da0b503e75c74c34e5e6a5cea9cc.png
网格搜索

但这种方法存在这两个问题:

  • 结果不稳定。当划分不同的数据集时,可能结果都一样。
  • 不能选择多参数。当需要多参数进行调优时,代码量会变的很多(多次嵌套循环)。

为了解决这些问题,sklearn提供GridSearchCV方法。

from sklearn.model_selection import GridSearchCV
threshholds = np.linspace(0, 0.5, 50)
param_grid = {'criterion':['gini', 'entropy'],
              'min_impurity_decrease':threshholds,
             'max_depth':range(2, 15)}

clf = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=5)
clf.fit(X, y)

print("best param: {0}\nbest score: {1}".format(clf.best_params_, 
                                                clf.best_score_))

# result
# best param: {'criterion': 'entropy', 'max_depth': 8, 'min_impurity_decrease': 0.0}
best score: 0.8204264870931538
相关文章
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
260 4
|
6月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
168 2
|
8月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
8月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
220 17
|
8月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
196 7
|
10月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
366 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
7月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
243 0
|
10月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
334 3
 算法系列之数据结构-Huffman树
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
587 3
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
407 0

热门文章

最新文章