tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

简介: tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo。

tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo。

更多教程:http://www.tensorflownews.com


#!/usr/bin/python
# -*- coding: UTF-8 -*-
import matplotlib.pyplot as plt
import tensorflow as tf
from PIL import Image
import numpy

img = Image.open('szu.jpg')
img_ndarray = numpy.asarray(img, dtype='float32')
print(img_ndarray.shape)
img_ndarray=img_ndarray[:,:,0]
plt.figure()
plt.subplot(221)
plt.imshow(img_ndarray)

w=[[-1.0,-1.0,-1.0],
   [-1.0,9.0,-1.0],
   [-1.0,-1.0,-1.0]]

with tf.Session() as sess:
    img_ndarray=tf.reshape(img_ndarray,[1,183,276,1])
    w=tf.reshape(w,[3,3,1,1])
    img_cov=tf.nn.conv2d(img_ndarray, w, strides=[1, 1, 1, 1], padding='SAME')
    image_data=sess.run(img_cov)
    print(image_data.shape)
    plt.subplot(222)
    plt.imshow(image_data[0,:,:,0])

    img_pool=tf.nn.max_pool(img_ndarray, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                   padding='SAME')
    image_data = sess.run(img_pool)
    plt.subplot(223)
    plt.imshow(image_data[0, :, :, 0])
    plt.subplot(224)
    img_pool = tf.nn.max_pool(img_ndarray, ksize=[1, 4, 4, 1], strides=[1, 4, 4, 1],
                              padding='SAME')
    image_data = sess.run(img_pool)
    plt.imshow(image_data[0, :, :, 0])
    plt.show()


效果图片




目录
相关文章
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
43 1
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第19天】在人工智能的浩瀚星海中,卷积神经网络(CNN)如同一颗璀璨的星辰,照亮了图像处理的天空。本文将深入CNN的核心,揭示其在图像识别领域的强大力量。通过浅显易懂的语言和直观的比喻,我们将一同探索CNN的奥秘,并见证它如何在现实世界中大放异彩。
|
8天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
21天前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
20天前
|
机器学习/深度学习 自动驾驶 TensorFlow
深入理解卷积神经网络(CNN)在图像识别中的应用
【9月更文挑战第20天】本文旨在通过直观的解释和代码示例,向初学者介绍卷积神经网络(CNN)的基本概念及其在图像识别领域的应用。文章将首先解释什么是CNN以及它如何工作,然后通过一个简单的Python代码示例展示如何构建一个基本的CNN模型。最后,我们将讨论CNN在现实世界问题中的潜在应用,并探讨其面临的挑战和发展方向。
45 2
|
20天前
|
机器学习/深度学习 人工智能 算法
深入浅出卷积神经网络(CNN)
【9月更文挑战第20天】在人工智能的璀璨星河中,卷积神经网络(CNN)如同一颗耀眼的星辰,以其独特的魅力照亮了图像处理的天空。本文将带你遨游CNN的宇宙,从其诞生之初的微弱光芒,到成为深度学习领域的超级巨星,我们将一同探索它的结构奥秘、工作原理以及在实际场景中的惊艳应用。你将发现,CNN不仅仅是一段段代码和算法的堆砌,它更是一种让机器“看”懂世界的强大工具。让我们扣好安全带,一起深入CNN的世界,体验技术与创新交织的精彩旅程。
|
26天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
42 7
|
21天前
|
机器学习/深度学习 人工智能 TensorFlow
深入探索深度学习中的卷积神经网络(CNN)
【9月更文挑战第19天】本文将深入浅出地介绍卷积神经网络(CNN)在深度学习领域的应用和原理,旨在为初学者提供一个清晰的理解框架。通过实例演示,我们将展示如何利用Python和TensorFlow库构建一个简单的CNN模型,用于图像分类任务。此外,文章还将探讨CNN在不同应用场景下的优化策略和挑战。
|
24天前
|
机器学习/深度学习 算法 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第16天】本文将深入浅出地介绍卷积神经网络(CNN)的基本概念、结构和工作原理,同时通过一个实际的代码示例来展示如何在Python中使用Keras库构建一个简单的CNN模型进行图像识别。我们将看到,即使是初学者也能够通过简单的步骤实现深度学习的强大功能,进而探索其在复杂数据集上的应用潜力。

热门文章

最新文章