[机器学习Lesson3] 梯度下降算法

简介: 1. Gradient Descent(梯度下降)梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。1.1 线性回归问题应用我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):Outline对θ0,θ1开始进行一些猜测通常将初θ0,θ1初始化为0在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改变使得J(θ0,θ1)变小,直到找到J的最小值或者局部最小值。

1. Gradient Descent(梯度下降)

梯度下降算法是很常用的算法,可以将代价函数J最小化。它不仅被用在线性回归上,也被广泛应用于机器学习领域中的众多领域。

1.1 线性回归问题应用

我们有一个函数J(θ0,θ1),要使其最小化minJ(θ0,θ01):

Outline

  • 对θ0,θ1开始进行一些猜测
    通常将初θ0,θ1初始化为0
  • 在梯度算法中,要做的就是不停的一点点改变θ0和θ1试图通过这种改变使得J(θ0,θ1)变小,直到找到J的最小值或者局部最小值。

1.2 梯度算法工作原理

现在我们把这个图像想象为一座山,想像类似这样的景色 :公园中有两座山,想象一下你正站立在山的这一点上 站立在你想象的公园这座红色山上。在梯度下降算法中,我们要做的就是旋转360度,看看我们的周围,并问自己,我要在某个方向上,用小碎步尽快下山。如果我想要下山。如果我想尽快走下山,这些小碎步需要朝什么方向? 如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,大约是那个方向。

现在你在山上的新起点上 你再看看周围 然后再一次想想 我应该从什么方向迈着小碎步下山? 然后你按照自己的判断又迈出一步 往那个方向走了一步 然后重复上面的步骤。从这个新的点,你环顾四周并决定从什么方向将会最快下山。然后又迈进了一小步,并依此类推,直到你接近这里,直到局部最低点的位置。

image

现在想象一下,我们在刚才的右边一些的位置,对梯度下降进行初始化。想象我们在右边高一些的这个点。开始使用梯度下降。如果你重复上述步骤,停留在该点,并环顾四周,往下降最快的方向迈出一小步,然后环顾四周又迈出一步,然后如此往复。如果你从右边不远处开始梯度下降算法将会带你来到这个右边的第二个局部最优处。 如果从刚才的第一个点出发,你会得到这个局部最优解 但如果你的起始点偏移了一些,起始点的位置略有不同 你会得到一个非常不同的局部最优解。这就是梯度下降算法的一个特点。

1.3 梯度下降算法定义。

  • :=:赋值符号(Assignment).
  • α:这里的α是一个数字,被称为学习速率(learning rate)。在梯度下降算法中,它控制了我们下山时会迈出多大的步子。
  • 微分项。

在梯度下降中,我们要更新θ0和θ1。当 j=0 和 j=1 时 会产生更新。所以你将更新J、θ0还有θ1。实现梯度下降算法的微妙之处是,在这个表达式中,如果你要更新这个等式,你需要同时更新 θ0和θ1。

θ0和θ1需要同步更新,右侧是非同步更新,错误。

1.4 梯度下降和代价函数

梯度下降是很常用的算法,它不仅被用在线性回归上 和线性回归模型还有平方误差代价函数。
当具体应用到线性回归的情况下,可以推导出一种新形式的梯度下降法方程:

image

  • m:训练集的大小
  • θ0与θ1同步改变
  • xi和yi:给定的训练集的值(数据)。

我们已经分离出两例θj:θ0和θ1为独立的方程;在θ1中,在推导最后乘以Xi。以下是推导∂/∂θjJ(θ)的一个例子:

image

这一切的关键是,如果我们从猜测我们的假设开始,然后反复应用这些梯度下降方程,我们的假设将变得越来越精确。

因此,这只是原始成本函数J的梯度下降。这个方法是在每个步骤的每个训练集中的每一个例子,被称为批量梯度下降。注意,虽然梯度下降一般容易受到局部极小值的影响,但我们在线性回归中所提出的优化问题只有一个全局,没有其他局部最优解,因此梯度下降总是收敛(假定学习率α不是太大)到全局最小值。实际上,j是凸二次函数。这里是一个梯度下降的例子,它是为了最小化二次函数而运行的。

image

上面所示的椭圆是二次函数的轮廓图。也表明是通过梯度下降的轨迹,它被初始化为(48,30)。X在图(连接的直线)的标志,θ梯度穿过它收敛到最小的连续值。


本文资料部分来源于吴恩达 (Andrew Ng) 博士的斯坦福大学机器学习公开课视频教程。

[1]网易云课堂机器学习课程:
http://open.163.com/special/opencourse/machinelearning.html
[2]coursera课程:
https://www.coursera.org/learn/machine-learning/

目录
相关文章
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
16天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
22天前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
26 2
|
24天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
49 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
4天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
28天前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
25天前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
28 0
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
95 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面