学界 | 哈佛研究者推出新型优化算法,指数级提升计算速度

简介: 一种新出现的算法可以大大缩短电影推荐和出租车路径规划这类问题的计算时间。

一种新出现的算法可以大大缩短电影推荐和出租车路径规划这类问题的计算时间。

这个算法由哈佛大学的研究人员开发,通过减少已有算法的迭代次数来快速解决优化问题。更出人意料的是,哈佛大学高级研究员Yaron Singer指出,这个方法并不以减少最终结果的精确度为代价。

优化问题是在可能的解中选出最佳答案,诸如映射从A点到B点的最快路径。许多专为解决优化问题设计的算法自从20世纪70年代首次被提出后便没有任何改进。

已有的优化算法通常是一个循序渐进的执行过程,迭代次数与所分析的数据量成正比。比如,一个电影推荐算法会依次找到每一部与用户喜欢的电影相似的电影。

然而,已有的优化算法存在“收益递减”的特性:随着算法的执行,每一步产生的相对收益变得越来越小。这意味着涉及海量数据的优化问题,寻找最优解的计算开销会极其昂贵。

在实验中,Singer和共同研究者Eric Balkanski发现他们的算法对包含6000名用户针对4000部电影的100万条评论数据集进行分析时,可以得出与现行算法相似的电影推荐结果,但速度却能提升20倍。

另外,对纽约市出租车公司与Limousine Commission的200万条出租车行车数据集进行分析时,新算法在为出租车挑选最佳位置时,不仅可以覆盖大部分潜在用户,而且比已有算法快6倍。

大部分已有的优化算法是通过单一方向的迭代运行来处理问题,而这一新的算法则采用多个方向并行实现。基于这样的方法,算法舍弃了不理想的优化方向,选取对结果最有价值的方向进行迭代。这种适应算法数据变化的方式,有助于解决收益递减问题。

这种策略可以发挥作用,得益于算法目标的两个不同方面。研究者称之为曲率(curvature)和同质性(homogeneity)。

对于电影推荐问题,具有高曲率的目标与用户看过的电影十分相似——例如,如果你喜欢Die Hard,那么算法推荐的电影很有可能包含这部电影的续集。对于出租车调度问题,具有高曲率的目标是出租车可以在30秒内响应客户的地方。曲率越平缓,算法越高效——例如,当一辆出租车的响应时间为5分钟而非30秒的时候,算法的效率更高。

同样对于电影推荐问题,具有高同质性的目标假设有许多电影可以推荐——例如,你喜欢Die Hard,高同质性的电影诸如Lethal Weapon 的同类型动作片会被算法推荐。对于出租车调度问题,具有高同质性的目标假设基于位置的客户分布相对均衡。同质性越高,算法越高效。

这种新的方法还可以用于解决其他问题,例如识别新药物、从在线健康社区发现药物间的相互作用以及开发医学成像的传感器阵列等等。

Singer说,“事实是我们确实能指数级得加速计算运行时间,这为医疗保健、计算生物学、机器学习和数据挖掘带来了新的契机,过去这些应用程序的计算成本太高,难以考虑太多因素。”

Balkanski和Singer正在探索他们的策略适用于哪些优化问题。他们同时也在计划为GPU编写代码,以在更多领域应用他们的成果。Singer表明,“一般来说,这些算法非常简单,几行代码即可实现。”。

Balkanski和Singer于6月28日在洛杉矶举行的国际计算机协会(ACM)的计算机理论研讨会(STOC)和7月12日在斯德哥尔摩的国际机器学习大会(ICML)上详细介绍了他们的成果。

相关报道:
https://spectrum.ieee.org/tech-talk/computing/software/new-optimization-algorithm-exponentially-speeds-computation

原文发布时间为:2018-07-31
本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”。

相关文章
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
80 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
9天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
6天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
16天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
下一篇
开通oss服务