sqoop关系型数据迁移原理以及map端内存为何不会爆掉窥探

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:   序:map客户端使用jdbc向数据库发送查询语句,将会拿到所有数据到map的客户端,安装jdbc的原理,数据全部缓存在内存中,但是内存没有出现爆掉情况,这是因为1.3以后,对jdbc进行了优化,改进jdbc内部原理,将数据写入磁盘存储了。

  序:map客户端使用jdbc向数据库发送查询语句,将会拿到所有数据到map的客户端,安装jdbc的原理,数据全部缓存在内存中,但是内存没有出现爆掉情况,这是因为1.3以后,对jdbc进行了优化,改进jdbc内部原理,将数据写入磁盘存储了。

原文和作者一起讨论: http://www.cnblogs.com/intsmaze/p/6775034.html

  Sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。Sqoop架构非常简单,其整合了Hive、Hbase和Oozie,通过map-reduce任务来传输数据,从而提供并发特性和容错

导入数据:MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统。

导出数据:从Hadoop的文件系统中导出数据到关系数据库mysql等。

 

工作机制

将导入或导出命令翻译成mapreduce程序来实现在翻译出的mapreduce中主要是对inputformatoutputformat进行定制。

Sqoop的数据导入

  从RDBMS导入单个表HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据或者Avrosequence文件二进制数据

表数据:mysql中有一个库test中intsmaze表


导入intsmaze
表数据到HDFS

bin/sqoop import \
--connect jdbc:mysql://192.168.19.131:3306/test \
--username root \
--password hadoop \
--table intsmaze \
--m 1

如果成功执行,那么会得到下面的输出。

17/04/25 03:15:06 INFO mapreduce.Job: Running job: job_1490356790522_0018
17/04/25 03:15:52 INFO mapreduce.Job: Job job_1490356790522_0018 running in uber mode : false
17/04/25 03:15:52 INFO mapreduce.Job: map 0% reduce 0%
17/04/25 03:16:13 INFO mapreduce.Job: map 100% reduce 0%
17/04/25 03:16:14 INFO mapreduce.Job: Job job_1490356790522_0018 completed successfully
17/04/25 03:16:15 INFO mapreduce.Job: Counters: 30
File System Counters......
Job Counters ......
Map-Reduce Framework......
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=22
17/04/25 03:16:15 INFO mapreduce.ImportJobBase: Transferred 22 bytes in 98.332 seconds (0.2237 bytes/sec)
17/04/25 03:16:15 INFO mapreduce.ImportJobBase: Retrieved 3 records.

原理解析:

    Sqoop的import工具会运行一个MapReduce作业,该作业会连接MySql数据库并读取表中的数据。默认情况下,该作业会并行使用4个map任务来加速导入过程,每个任务都会将其所导入的数据写到一个单独的文件,但所有4个文件都位于同一个目录中。这里我们只使用一个map(-m 1),这样我们只得到一个保存在hdfs中的文件。

查看HDFS导入的数据,intsmaze表的数据和字段之间用逗号(,)表示。

1,2,22
2,3,33
3,ad,12

       默认情况下,Sqoop会将我们导入的数据保存为逗号分隔的文本文件。如果导入数据的字段内容存在逗号分隔符,我们可以另外指定分隔符,字段包围字符和转义字符。使用命令行参数可以指定分隔符,文件格式,压缩等。支持文本文件(--as-textfile)、avro(--as-avrodatafile)、SequenceFiles(--as-sequencefile)。默认为文本。

   Sqoop启动的mapreduce作业会用到一个InputFormat,它可以通过JDBC从一个数据库表中读取部分内容。Hadoop提供的DataDrivenDBInputFormat能够为几个map任务对查询结果进行划分。

  使用一个简单的查询通常就可以读取一张表的内容

select col1,col2,... form tablename

    但是为了更好的导入性能,可以将查询划分到多个节点上执行。查询时根据一个划分列(确定根据哪一个列划分)来进行划分。根据表中的元数据,Sqoop会选择一个合适的列作为划分列(通常是表的主键)。主键列中的最小值和最大值会被读出,与目标任务数一起来确定每个map任务要执行的查询。当然用户也可以使用split-by参数自己指定一个列作为划分列。

  例如:person表中有10000条记录,其id列值为0~9999。在导入这张表时,Sqoop会判断出id是表的主键列。启动MapReduce作业时,用来执行导入的DataDrivenDBInputFormat便会发出一条类似于select min(id),max(id) form intsmaze的查询语句。假设我们制定运行5个map任务(使用-m 5),这样便可以确认每个map任务要执行的查询分别为select id,name,... form intsmaze where id>=0 and id<2000,select id,name,... form intsmaze where id>=2000 and id<4000,...,依次类推。

  注意:划分列的选择是影响并行执行效率的重要因素。如果id列的值不是均匀分布的(比如id值从2000到4000的范围是没有记录的),那么有一部分map任务可能只有很少或没有工作要做,而其他任务则有很多工作要做。

  严重注意:在1.3之前,map的并行度一定要设置好,因为map客户端会向数据库发送查询语句,将会拿到所有数据到map的客户端缓存到,然后在执行map()方法一条一条处理,所有如果设置不好,一个map拿到的表数据过大就会内存溢出,毕竟里面是用jdbc去获取的,所有数据都装在jdbc的对象中,爆是必然的。在1.3以后改写jdbc的内部原理,拿到一条数据就写入硬盘中,就没有内存溢出了

增量导入

  Sqoop不需要每次都导入整张表。例如,可以指定仅导入表的部分列。用户也可以在查询中加入where子句,来限定需要导入的记录。例如,如果上个月已经将id为0~9999的记录导入,而本月新增了1000条记录,那么在导入时的查询语句中加入子句where id>=10000,来实现只导入所有新增的记录。

它需要添加incremental,check-column,和last-value选项来执行增量导入。

下面的语法用于Sqoop导入命令增量选项。

--incremental <mode>
--check-column <column name>
--last value <last check column value>

假设新添加的数据转换成intsmaze表如下:

 

下面的命令用于在intsmaze表执行增量导入

 bin/sqoop import --connect jdbc:mysql://192.168.19.131:3306/test --username root --password hadoop \
--table person \
--m 1 \
--incremental append \
--check-column id \
--last-value 3

执行增量导入时,则会在hdfs上默认路径下新增一个文件来存储导入的新增数据,如上面的part-m-00001。

part-m-00001文件的数据内容为:

4,aa,4
5,bb,5
6,cc,6
   注意:如果不是增量导入,也没有指定路径,再次执行bin/sqoop import --connect jdbc:mysql://192.168.19.131:3306/test --username root --password hadoop --table intsmaze --m 2 则会报该路径下的目录已经存在错误,即无法执行成功。

导入到HDFS指定目录

在使用Sqoop导入表数据到HDFS,我们可以指定目标目录。

--target-dir <new or exist directory in HDFS>

下面的命令是用来导入emp_add表数据到'/queryresult'目录。

bin/sqoop import \
--connect jdbc:mysql://192.168.19.131:3306/test \
--username root \
--password hadoop \
--target-dir /queryresult \
--table intsmaze \
--m 1

  实际场景的分析:我一开始担心在导入增量数据时,数据文件的位置等问题,想过通过每次执行增量导入时来根据时间作为文件名来指定每一次导入时文件存储在hdfs上的路径来解决。现在看来不需要担心这个问题了。但是考虑这样一种情况:关系库中的某张表每天增量导入到hdfs上,然后使用hive对导入的数据加载进hive表时,我们不应该每次都情况hive表再进行全局导入hive,这样太耗费效率了。当然可以根据文件的生成时间来确定每次把那个文件导入到hive中,但是不便于维护,可以直接根据目录名来导入该目录下的数据到hive中,且导入到hive中的数据可以按天设置分区,每次导入的数据进入一个新的分区。   

  有些业务场景只需要对hive表中每天新增的那些数据进行etl即可,完全没有必要每次都是将整个hive表进行清理,那么可以结合hive的分区,按天进行分区,这样每次进行etl处理就处理那一个分区数据即可。当然有些数据比如两表的join操作,则必须对全表进行处理,那么在join时不限制分区即可,数据倒入时仍然时间分区装载数据。

导入关系表到HIVE

bin/sqoop import --connect jdbc:mysql://192.168.19.131:3306/test --username root --password root --table intsmaze --hive-import --m 1
绝对可以向hive增量导入数据的,只是不知道内部原理即从hdfs到hive这一过程。
sqoop import --connect jdbc:mysql://192.168.19.131:3306/hive --username root --password admin --table intsmaze --fields-terminated-by '\t' --null-string '**' -m 1 --append --hive-import --check-column 'TBL_ID' --incremental append --last-value 6

导入表数据子集

Sqoop导入"where"子句的一个子集。它执行在各自的数据库服务器相应的SQL查询,并将结果存储在HDFS的目标目录。

where子句的语法如下。

--where <condition>

导入intsmaze表数据的子集。子集查询检所有列但是居住城市为:sec-bad

bin/sqoop import \
--connect jdbc:mysql://192.168.19.131:3306/test \
--username root \
--password root \
--where "city ='sec-bad'" \
--target-dir /wherequery \
--table intsmaze --m 1

按需导入

bin/sqoop import \
--connect jdbc:mysql://192.168.19.131:3306/test \
--username root \
--password root \
--target-dir /wherequery2 \
--query 'select id,name,deg from intsmaze WHERE  id>1207 and $CONDITIONS' \
--split-by id \
--fields-terminated-by '\t' \
--m 1

$CONDITIONS参数是固定的,必须要写上。

支持将关系数据库中的数据导入到Hive(--hive-import)、HBase(--hbase-table)

   数据导入Hive分三步:1)导入数据到HDFS  2)Hive建表  3)使用“LOAD DATA INPAHT”将数据LOAD到表中

   数据导入HBase分二部:1)导入数据到HDFS 2)调用HBase put操作逐行将数据写入表

导入表数据由于字段存在空字符串或null导致的问题

增量添加数据进hdfs
 bin/sqoop import --connect jdbc:mysql://192.168.19.131:3306/test --username root --password hadoop \
--table intsmaze \
--m 1 \
--incremental append \
--check-column id \
--last-value 6

我们查看hdfs上的数据

7,null,7
8,null,8

MySQL(或者别的RDBMS)导入数据到hdfs后会发现原来在mysql中字段值明明是NULL, 到Hive查询后 where field is null 会没有结果呢,然后通过检查一看,NULL值都变成了字段串'null'。其实你在导入的时候加上以下两个参数就可以解决了,

--null-string '\\N' 
--null-non-string '\\N' 

  这里要注意一点。在hive里面。NULL是用\N来表示的。你可以自己做个实验 insert overwrite table tb select NULL from tb1 limit 1;然后在去查看原文件就可以发现了。多提一点,如果在导入后发现数据错位了,或者有好多原来有值的字段都变成了NULL, 这是因为你原表varchar类型的字段中可能含有\n\r等一些特殊字符。可以加上 --hive-drop-import-delims

作者: intsmaze(刘洋)
老铁,你的--->推荐,--->关注,--->评论--->是我继续写作的动力。
微信公众号号:Apache技术研究院
由于博主能力有限,文中可能存在描述不正确,欢迎指正、补充!
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
算法 JavaScript 前端开发
新生代和老生代内存划分的原理是什么?
【10月更文挑战第29天】新生代和老生代内存划分是JavaScript引擎为了更高效地管理内存、提高垃圾回收效率而采用的一种重要策略,它充分考虑了不同类型对象的生命周期和内存使用特点,通过不同的垃圾回收算法和晋升机制,实现了对内存的有效管理和优化。
|
2月前
|
C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(二)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
2月前
|
编译器 C++ 开发者
【C++】深入解析C/C++内存管理:new与delete的使用及原理(三)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
2月前
|
存储 C语言 C++
【C++】深入解析C/C++内存管理:new与delete的使用及原理(一)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
4月前
|
监控 算法 Java
Java内存管理:垃圾收集器的工作原理与调优实践
在Java的世界里,内存管理是一块神秘的领域。它像是一位默默无闻的守护者,确保程序顺畅运行而不被无用对象所困扰。本文将带你一探究竟,了解垃圾收集器如何在后台无声地工作,以及如何通过调优来提升系统性能。让我们一起走进Java内存管理的迷宫,寻找提高应用性能的秘诀。
|
4月前
|
存储 开发框架 .NET
"揭秘.NET内存奥秘:从CIL深处窥探值类型与引用类型的生死较量,一场关于速度与空间的激情大戏!"
【8月更文挑战第16天】在.NET框架中,通过CIL(公共中间语言)可以深入了解值类型与引用类型的内存分配机制。值类型如`int`和`double`直接在方法调用堆栈上分配,访问迅速,生命周期随栈帧销毁而结束。引用类型如`string`在托管堆上分配,堆栈上仅存储引用,CLR负责垃圾回收,确保高效且自动化的内存管理。
58 6
|
2月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
95 3
|
3月前
|
监控 算法 Java
深入理解Java中的垃圾回收机制在Java编程中,垃圾回收(Garbage Collection, GC)是一个核心概念,它自动管理内存,帮助开发者避免内存泄漏和溢出问题。本文将探讨Java中的垃圾回收机制,包括其基本原理、不同类型的垃圾收集器以及如何调优垃圾回收性能。通过深入浅出的方式,让读者对Java的垃圾回收有一个全面的认识。
本文详细介绍了Java中的垃圾回收机制,从基本原理到不同类型垃圾收集器的工作原理,再到实际调优策略。通过通俗易懂的语言和条理清晰的解释,帮助读者更好地理解和应用Java的垃圾回收技术,从而编写出更高效、稳定的Java应用程序。
|
4月前
|
存储 JavaScript 算法