开发者社区> 美码师> 正文

mongodb分片扩展架构

简介: [TOC] 一、简介 MongoDB目前3大核心优势:『灵活模式』+ 『高可用性』 + 『可扩展性』,通过json文档来实现灵活模式,通过复制集来保证高可用,通过Sharded cluster来保证可扩展性。
+关注继续查看

[TOC]

一、简介

MongoDB目前3大核心优势:『灵活模式』+ 『高可用性』 + 『可扩展性』,通过json文档来实现灵活模式,通过复制集来保证高可用,通过Sharded cluster来保证可扩展性。

MongoDB 分片集群Sharded Cluster通过将数据分散存储到多个分片(Shard)上来实现高可扩展性。
当MongoDB复制集遇到下面的业务场景时,你就需要考虑使用Sharded cluster

  • 存储容量需求超出单机磁盘容量
  • 活跃的数据集超出单机内存容量,导致很多请求都要从磁盘读取数据,影响性能
  • 写IOPS超出单个MongoDB节点的写服务能力

img_56cbda446a27369ce84031df69fa28a6.png

如上图所示,Sharding Cluster使得集合的数据可以分散到多个Shard(复制集或者单个Mongod节点)存储,使得MongoDB具备了横向扩展(Scale out)的能力,丰富了MongoDB的应用场景。

二、分片集群

实现分片集群时,MongoDB 引入 Config Server 来存储集群的元数据,引入 mongos 作为应用访问的入口,mongos 从 Config Server 读取路由信息,并将请求路由到后端对应的 Shard 上。
Diagram of a sample sharded cluster for production purposes. Contains exactly 3 config servers, 2 or more mongos query routers, and at least 2 shards. The shards are replica sets.
img_46788543c3bdb535220021434f8f882b.png

角色说明

A.数据分片(Shards)
用来保存数据,保证数据的高可用性和一致性。可以是一个单独的mongod实例,也可以是一个副本集。
在生产环境下Shard一般是一个Replica Set,以防止该数据片的单点故障。所有Shard中有一个PrimaryShard,里面包含未进行划分的数据集合:

B.配置服务器(Config servers)
保存集群的元数据(metadata),包含各个Shard的路由规则。

C.查询路由(Query Routers)
Mongos是Sharded cluster的访问入口,其本身并不持久化数据(Sharded cluster所有的元数据都会存储到Config Server,而用户的数据则会分散存储到各个shard)
Mongos启动后,会从config server加载元数据,开始提供服务,将用户的请求正确路由到对应的Shard
Sharding集群可以有一个mongos,也可以有多mongos以减轻客户端请求的压力。

三、数据分布策略

Sharded cluster支持将单个集合的数据分散存储在多个shard上,用户可以指定根据集合内文档的某个字段即shard key来分布数据,
目前主要支持2种数据分布的策略,范围分片(Range based sharding)或hash分片(Hash based sharding)。

范围分片
Diagram of the shard key value space segmented into smaller ranges or chunks.
img_3d6f42fa1ba695b4520a2dd5bfd439ae.png

如上图所示,集合根据x字段来分片,x的取值范围为[minKey, maxKey](x为整型,这里的minKey、maxKey为整型的最小值和最大值),将整个取值范围划分为多个chunk,每个chunk(通常配置为64MB)包含其中一小段的数据。
Chunk1包含x的取值在[minKey, -75)的所有文档,而Chunk2包含x取值在[-75, 25)之间的所有文档... 每个chunk的数据都存储在同一个Shard上,每个Shard可以存储很多个chunk,chunk存储在哪个shard的信息会存储在Config server种,mongos也会根据各个shard上的chunk的数量来自动做负载均衡。

范围分片能很好的满足『范围查询』的需求,比如想查询x的值在[-30, 10]之间的所有文档,这时mongos直接能将请求路由到Chunk2,就能查询出所有符合条件的文档。
范围分片的缺点在于,如果shardkey有明显递增(或者递减)趋势,则新插入的文档多会分布到同一个chunk,无法扩展写的能力,比如使用_id作为shard key,而MongoDB自动生成的id高位是时间戳,是持续递增的。

HASH分片
Hash分片是根据用户的shard key计算hash值(64bit整型),根据hash值按照『范围分片』的策略将文档分布到不同的chunk。
Diagram of the hashed based segmentation.
img_e7f5ecc68ed154209eca92a2e4bed825.png

Hash分片与范围分片互补,能将文档随机的分散到各个chunk,充分的扩展写能力,弥补了范围分片的不足,但不能高效的服务范围查询,所有的范围查询要分发到后端所有的Shard才能找出满足条件的文档。

合理的选择shard key
选择shard key时,要根据业务的需求及『范围分片』和『Hash分片』2种方式的优缺点合理选择,同时还要注意shard key的取值一定要足够多,否则会出现单个jumbo chunk,即单个chunk非常大并且无法分裂(split);比如某集合存储用户的信息,按照age字段分片,而age的取值非常有限,必定会导致单个chunk非常大。

四、Mongos访问模式

所有的请求都由mongos来路由、分发、合并,这些动作对客户端driver透明,用户连接mongos就像连接mongod一样使用。
Mongos会根据请求类型及shard key将请求路由到对应的Shard,因此不同的操作请求存在不同限制。

  • 查询请求
    查询请求不包含shard key,则必须将查询分发到所有的shard,然后合并查询结果返回给客户端
    查询请求包含shard key,则直接根据shard key计算出需要查询的chunk,向对应的shard发送查询请求

  • 插入请求
    写操作必须包含shard key,mongos根据shard key算出文档应该存储到哪个chunk,然后将写请求发送到chunk所在的shard。

  • 更新/删除请求
    更新、删除请求的查询条件必须包含shard key或者_id,如果是包含shard key,则直接路由到指定的chunk,如果只包含_id,则需将请求发送至所有的shard。

  • 其他命令请求
    除增删改查外的其他命令请求处理方式都不尽相同,有各自的处理逻辑,比如listDatabases命令,会向每个Shard及Config Server转发listDatabases请求,然后将结果进行合并。

如何连接
一个典型的ConnectURI 结构如下:

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/[database][?options]]

//说明
- mongodb:// 前缀,代表这是一个Connection String;
- username:password@ 如果启用了鉴权,需要指定用户密码;
- hostX:portX多个 mongos 的地址列表;
- /database鉴权时,用户帐号所属的数据库;
- ?options 指定额外的连接选项,比如指定readPreference=secondaryPreferred实现读写分离

分片集群可以提供多个 mongos 实现现负载均衡;而当某个 mongos 故障时,客户端也能自动进行 failover,将请求都分散到状态正常的 mongos 上。
当 mongos 数量很多时,还可以按应用来将 mongos 进行分组,比如有2个应用 A、B、有4个 mongos,可以让应用 A 访问 mongos 1-2(URI 里只指定 mongos 1-2 的地址),
应用 B 来访问 mongos 3-4(URI 里只指定 mongos 3-4 的地址),根据这种方法来实现应用间的访问隔离(应用访问的 mongos 彼此隔离,但后端 Shard 仍然是共享的),如下图

img_90a27c88fe898933dc87957e0dddb3cf.png

五、Config元数据

Config server存储Sharded cluster的所有元数据,所有的元数据都存储在config数据库,
3.2版本后,Config Server可部署为一个独立的复制集,极大的方便了Sharded cluster的运维管理。

config数据集合如下表所示:

集合名称 说明
config.shards 存储各个Shard的信息,可通过addShard、removeShard命令来动态的从Sharded cluster里增加或移除shard
config.databases 存储所有数据库的信息,包括DB是否开启分片,primary shard信息,对于数据库内没有开启分片的集合,所有的数据都会存储在数据库的primary shard上
config.colletions 数据分片是针对集合维度的,某个数据库开启分片功能后,如果需要让其中的集合分片存储,则需调用shardCollection命令来针对集合开启分片。
config.chunks 集合分片开启后,默认会创建一个新的chunk,shard key取值[minKey, maxKey]内的文档(即所有的文档)都会存储到这个chunk。当使用Hash分片策略时,可以预先创建多个chunk,以减少chunk的迁移
config.settings 存储sharded cluster的配置信息,比如chunk size,是否开启balancer等
config.tags 主要存储sharding cluster标签(tag)相关的你洗,以实现根据tag来分布chunk的功能
config.changelog 主要存储sharding cluster里的所有变更操作,比如balancer迁移chunk的动作就会记录到changelog里。
config.mongos 存储当前集群所有mongos的信息
config.locks 存储锁相关的信息,对某个集合进行操作时,比如moveChunk,需要先获取锁,避免多个mongos同时迁移同一个集合的chunk。

六、分片均衡

Mongodb 实现了自动分片均衡,均衡器是一个在后台对分片chunk进行监控的进程,当某个shard的chunks差异数量到达阈值时,将自动开始在shard中间迁移chunk数据库以达到均衡目的。整个迁移过程对应用层是透明的,从3.4版本开始,均衡器不再由Mongos执行,而是由Config副本集的主节点来处理。

img_bd3ebe871534200995a14e842ad61e8a.png

迁移过程中对集群性能存在一定影响,因此一般可以通过设置均衡窗口对齐到业务闲时段。

阈值参考表
|Number of Chunks| Migration Threshold|
|-|-|
|Fewer than 20| 2||
|20-79| 4|
|80 and greater| 8|

迁移过程

  1. 均衡器向源shard发送moveChunk命令;
  2. 源shard执行内部的moveChunk流程,过程中数据操作仍然指向当前shard
  3. 目标shard构建缺失的索引;
  4. 目标shard请求并接收chunk副本数据;
  5. 在chunk接收到后,目标shard向源shard确认是否存在增量更新数据,若存在则继续同步;
  6. 完全同步后,源shard通知config副本集更新元数据库,将chunk的位置更新为目标shard
  7. 在更新完元数据库后并确保没有关联cursor的情况下,源shard删除被迁移的chunk副本。

参考文档

mongodb shard cluster原理
http://www.mongoing.com/archives/2782

mongo中文社区-高可用mongodb集群
https://yq.aliyun.com/articles/61516

官网-mongodb分片集群
https://docs.mongodb.com/manual/core/sharding-balancer-administration/

img_9b09a36f6de95886f52ce82fa1e89c88.jpe

作者: zale

出处: http://www.cnblogs.com/littleatp/, 如果喜欢我的文章,请关注我的公众号

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出 原文链接  如有问题, 可留言咨询.

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【老猿说架构】高并发高可用易扩展架构设计的套路
【老猿说架构】高并发高可用易扩展架构设计的套路
46 0
【数据库架构】PostgreSQL常用的开源扩展
如果您使用的是PostgreSQL,您可以利用优秀的开源扩展来根据您的业务需求增强或添加功能。这些扩展是由其社区积极开发的,这些社区与PostgreSQL社区本身是分开的。PostgreSQL有数百个OSS扩展,其中许多是在生产环境中实现的。
63 0
PolarDB-X基于Share-Nothing的架构支持水平扩展
PolarDB-X基于Share-Nothing的架构支持水平扩展
114 0
三高Mysql - 搭建“三高”架构之扩展与切换(下)
三高Mysql - 搭建“三高”架构之扩展与切换(下)
518 0
三高Mysql - 搭建“三高”架构之扩展与切换(上)
三高Mysql - 搭建“三高”架构之扩展与切换(上)
95 0
RISC-V生态全景解析(四):玄铁VirtualZone基于RISC-V架构的安全扩展
芯片开放社区(OCC)面向开发者推出RISC-V系列内容,通过多角度、全方位解读RISC-V,系统性梳理总结相关理论知识,构建RISC-V知识图谱,促进开发者对RISC-V生态全貌的了解。
929 0
玄铁VirtualZone:基于RISC-V架构的安全扩展
本文是RISC-V知识图谱系列中有关安全拓展的内容,主要介绍了RISC-V架构在实现TEE可信执行环境上所有具备的安全能力,并描述了基于RISC-V架构的玄铁C系列处理器实现的安全扩展。
1053 0
开源OpenIM:高性能、可伸缩、易扩展的即时通讯架构
网上有很多关于IM的教程和技术博文,有亿级用户的IM架构,有各种浅谈原创自研IM架构,也有微信技术团队分享的技术文章,有些开发者想根据这些资料自研IM。理想很丰满,现实很骨感,最后做出来的产品很难达到商用标准。事实上,很多架构没有经过海量用户的考验,当然我们也不会评判某种架构的好坏,如果开发者企图根据网上教程做出一个商用的IM,可能有点过于乐观了。本文主要从我个人角度深度剖析100%开源的OpenIM架构。当然,世界上没有最完美的架构,只有最合适的架构,也没有所谓的通用方案,不同的解决方案都有其优缺点,只有最满足业务的系统才是一个好的系统。而且,在有限的人力、物力,综合考虑时间成本,通常需要做
582 0
扩展 GRTN:云原生趋势下的 RTC 架构演进
在 2021 LiveVideoStackCon 音视频技术大会上海站,聚焦 “轻端重云和边缘架构新模式” 专场,阿里云视频云的 RTC 传输专家杨成立(忘篱)带来 “基于边缘云原生的 RTC 服务架构演进” 的主题演讲,与行业伙伴分享视频云在 RTC 服务架构演进之路上的挑战和经验,以下为完整的演讲内容。
565 0
+关注
美码师
美码师,老码农一枚,唯美食与技术不能辜负,欢迎交流及打扰!
文章
问答
文章排行榜
最热
最新
相关电子书
更多
基于英特尔®架构的阿里云服务网格ASM技术加速应用服务加密通
立即下载
以银行架构视角解读和落实银行数字化转型的两份重磅指导文件
立即下载
云原生架构容器&微服务优秀案例集
立即下载